2096

Элементарный излучатель Гюйгенса

Доклад

Энергетика

Может быть представлен в виде воображаемой плоской площадки в диэлектрической среде без потерь, в том числе в свободном пространстве, размеры площадки много меньше длины волны.

Русский

2013-01-06

85.15 KB

38 чел.

Элементарный излучатель Гюйгенса.

Может быть представлен в виде воображаемой плоской площадки в диэлектрической среде без потерь, в том числе в свободном пространстве; размеры площадки много меньше длины волны. Площадка обычно изображается в виде прямоугольника с размерами dx, dy , хотя может быть и произвольной формы. На площадке действуют равномерно распределенное электронного и магнитного поля, векторы которых перпендикулярны() друг другу. Таким образом, излучатель Гюйгенса является небольшим участком фронта плоской волны. Компоненты поля, создаваемого в дальней зоне будут равны:

- волновое число

Излучатель Гюйгенса создает однонаправленное излучение: оно максимально в направлении, определяемом произведением равно нулю в обратном направлении. Излучатель Гюйгенса создает в дальней зоне сферические волны.


 

А также другие работы, которые могут Вас заинтересовать

20725. Замечательные пределы 40.5 KB
  Замечательные пределы Существует 4 замечательных предела: I. Покажем доказательство первого предела. ; ; ; ; ; ; ; по свойству функции имеющей предел имеем предел зажатой последовательности ч.
20726. Дифференцируемая функция одной переменной. Геометрический и физический смысл производной. Правила дифференцирования 123 KB
  Касательной к кривой K в точке Mo называется предельное положение секущей когда ММо. Предел Vcp = Если он существует то называется мгновенной скоростью в точке М и обозначается V. yo y = fxox y = Если существует предел то он называется производной данной функции в данной точке xo. Обозначим приращение функции в точке xo приращению аргумента Если вместо xo произвольная точка x то пишут не указывая в какой точке.
20727. Исторический обзор оснований геометрии. «Начала» Евклида 28 KB
  И если к равным прибавить равные то получим равные. И если от равных отнимем равные то получим равные. И если неравным прибавить равные то получим неравные. И если удвоим равные то получим равные.
20729. Лобачевский и его геометрия. Аксиома Лобачевского. Простейшие факты геометрии Лобачевского. Взаимное расположение прямых на плоскости Лобачевского 34 KB
  Аксиома Лобачевского. Простейшие факты геометрии Лобачевского. Взаимное расположение прямых на плоскости Лобачевского. Эта аксиома называется аксиомой Лобачевского.
20730. Проективные свойства фигур. Принцип двойственности. Теорема Дезарга 56 KB
  Принцип двойственности. Малый принцип двойственности. Сформулированный принцип двойственности справедлив на плоскости. Большой принцип двойственности.
20731. Взаимное расположение двух и трех плоскостей, прямой и плоскости, двух прямых в пространстве (в аналитическом изложении) 124.5 KB
  3 1 Параметрическое уравнение прямой: 2 Систему можно заменить следующей системой: ’ ’= Система двух однородных уравнений с тремя неизвестными имеет общее решение которое можно записать в виде: l –координаты направляющей прямой . Взаимное положение плоскости и двух прямых: 1 Ø 2 3 1R=3 ранг – скрещивающиеся 2 R=2r=2 –прямые пересекаются.
20732. Группа аффинных преобразований и ее подгруппы. Приложения аффинных преобразований к решению задач 105 KB
  Зададим на плоскости два аффинных репера аф.репером R на плоскости наз. Упорядоченная тройка точек ОA1A2 этой плоскости не лежащих на одной прямой. Пишут:R={ОA1A2} R={O1 2 } R’={O’ ’1 2} и рассмотрим отображение f плоскости в себя по закону: координаты точки M’=fM в репере R’ равны соответствующим координатам х у точки М в репере R.
20733. Группа преобразований подобия и ее подгруппы. Приложение преобразований к решению задач 95.5 KB
  Группа преобразований подобия и ее подгруппы. Гомотетия с коэффициентом также является частным случаем подобия . Как и для движения можно доказать теорему которая делает определение подобия конструктивным: Как и для движений можно показать что и Из этих формул следует что всякое подобие можно представить в виде произведения гомотетии и движения . Теорема: множество преобразований подобия на плоскости образуют группу.