20995

Дослідження характеристик цифрових фільтрів у програмі MatLab

Лабораторная работа

Информатика, кибернетика и программирование

Для перетворення сигналу з аналогової форми в дискретну застосовуємо блок АЦП. Для графічного відображення результатів роботи застосовуємо блоки Signal Processing Blockset signal Processing Sinks time Scope для відображення часової залежності сигналів та Signal Processing Blockset signal Processing Sinks spectrum Scope для відображення спектру сигналу. Для фільтрації в пакеті Sptool виконуємо наступні дії: В полі Signals виділяємо назву необхідного сигналу Signnoise. Натискуємо кнопку Apply після натиснення якої з'являється діалогове...

Русский

2013-08-02

297.85 KB

3 чел.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ ТА СПОРТУ УКРАЇНИ

КРЕМЕНЧУЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

ІМ. М. ОСТРОГРАДСЬКОГО

ІНСТИТУТ ЕЛЕКТРОМЕХАНІКИ, ЕНЕРГОЗБЕРЕЖЕННЯ ТА СИСТЕМ УПРАВЛІННЯ

КАФЕДРА СИСТЕМ АВТОМАТИЧНОГО УПРАВЛІННЯ І

ЕЛЕКТРОПРИВОДА

ЗВІТ

До лабораторної роботи № 2

З дисципліни: «Основи збору, передачі та обробки інформації»

На тему: «Дослідження характеристик цифрових фільтрів у програмі MatLab»

Виконав:

Студент групи СІ-11-3С

Хамула І.Ю.

Прийняла:

Гаврилець Г.О.

КРЕМЕНЧУК 2012

Мета:  Синтезувати і проаналізувати цифрові фільтри з використанням програмного пакету MatLab.

Порядок виконання роботи

  1.  За допомогою блоку Simulink/sources/sine Wave задаємо тестовий синусоїдальний сигнал. У параметрах блоку задаємо амплітуду 10, частоту 50 Гц, фаза і зсув дорівнюють нулю.
  2.  Оскільки більшість перешкод має випадковий характер, то як джерело зовнішньої дії застосовуємо генератор білого шуму Simulink/sources/band Limited White Noise. Sample Time задаємо рівним 0,0002, значення параметра Noise Power встановлюємо рівним 0,001.
  3.  Робимо накладення перешкоди на вихідний сигнал за допомогою блоку суматора.
  4.  Для перетворення сигналу з аналогової форми в дискретну застосовуємо блок АЦП. Роль АЦП в пакеті Simulink виконує блок квантування Simulink/discontinuities/quantizer.
  5.  Для реалізації алгоритму цифрової фільтрації використовуємо вбудований блок Signal Processing Blockset/filtering/filter Designs/digital Filter Design, при відкритті якого з'являється вікно пакету fdatool для моделювання цифрового фільтру.
  6.  Для графічного відображення результатів роботи застосовуємо блоки Signal Processing Blockset/signal Processing Sinks/time Scope для відображення часової залежності сигналів та Signal Processing Blockset/signal Processing Sinks/spectrum Scope для відображення спектру сигналу.
  7.  Для можливості обробки даних в пакеті SPTool  зберігаємо отримані сигнали в робочий простір(То Workspace), визначивши наступні змінні:

Input – вхідний корисний сигнал;

Signnoise – квантований зашумлений сигнал;

Filtred – відфільтрований сигнал.

  1.  Для автоматичного запуску пакету Sptool по закінченню моделювання додаємо в модель блок Simulink/sources/clock, блок призначеної для користувача функції Simulink/user-defined Functions/matlab Fcn і заглушку Simulink/sincs/terminator.
  2.  Загальну процедуру цифрової обробки сигналів можливо реалізувати в пакеті SPTool, використовуючи наступний алгоритм :
  3.  Імпортуємо модель фільтру і сигнали, отримані при моделюванні в Simulink, в пакет SPTool :
  4.  Використовуючи пункт меню File/import, вказуємо необхідний вектор даних (Input–початковий сигнал, Signnoise–зашумленний сигнал).
  5.   Імпортуємо модель фільтру з Fdatool. У пакеті Fdatool вибираємо меню File/export і вказуємо в полі Export to значення Sptool. У полі Discrete Filter вказуємо назву фільтру – Myfilter.
  6.  Для фільтрації в пакеті Sptool виконуємо наступні дії:
  7.  В полі Signals виділяємо назву необхідного сигналу (Signnoise).
  8.  В полі Filters виділяємо назву необхідного фільтру (Myfilter).
  9.  Натискуємо кнопку Apply, після натиснення якої з'являється діалогове вікно в якому вказано ім'я фільтру, ім'я вхідного сигналу, тип алгоритму і задаємо ім'я вихідного сигналу – Filtred.
  10.  Після натиснення кнопки ОК вікна Apply Filter відбувається додавання сигналу у вікно Signals пакету Sptool.
  11.  Для перегляду сигналів в часовій області у вікні Signals слід виділити один або декілька сигналів і натискувати кнопку View. У контекстному меню вікна вибираємо колір відображення кожного сигналу.
  12.  Для створення і відображення спектру досліджуваного сигналу виділяємо сигнал (вікно Signals) і натискуємо кнопку Create у вікні Spectra. Далі натискуємо кнопку Apply, після чого у вікні Spectrum Viewer відображується спектр вибраного сигналу.

Рисунок 1– Реалізація загальної схеми обробки сигналів в пакеті Matlab

Рисунок 2 – Часові діаграми початкового, зашумленого і відфільтрованого сигналів

Рисунок 3 – Спектри вихідного, зашумленого і відфільтрованого сигналів

Рисунок 4 – Тимчасові діаграми початкового, зашумленого і відфільтрованого сигналів.

Рисунок 5 – Створення спектру сигналу.

Висновок:  На проведеній лабораторній роботі  було досліджено характеристики цифрових фільтрів з використанням програмного пакету MatLab.


 

А также другие работы, которые могут Вас заинтересовать

74334. Понятие пропускной способности электропередачи, факторы её определяющие 32 KB
  Второе ограничение связано с риском нарушения синхронной работы генератора при повышении нагрузки на которых возникает условие для выхода из синхронизма. Это ограничение чаще практикуется по статической устойчивости. При некоторой меньшей длине активным ограничение будет являться ограничение по нагреванию. Заметим что ограничение по нагреванию не зависит от длины ЛЭП.
74335. Компактные, компенсированные электропередачи переменного тока 66 KB
  Компактные компенсированные электропередачи переменного тока. В основу конструкций перспективных компактных воздушных линий электропередач разработанных в нашей стране положена простая идея. Образцы таких распорок уже созданы и составлены проекты будущих компактных воздушных линий электропередач рис. В скобках показаны для сравнения расстояния между фазами для обычных воздушных линий электропередач Расчеты показали что при меньших по сравнению с обычными воздушными линиями электропередач размерами компактные воздушные линии электропередач...
74336. Моделирование (представление) эл нагрузок при расчете рабочих режимов эл.передач и эл.сетей 114.5 KB
  Активные элементы схем замещения электрических сетей и систем нагрузки и генераторы представляются в виде линейных или нелинейных источников. Способы задания нагрузок при расчетах режимов: а постоянный по модулю и фазе ток; б постоянная по модулю мощность; вгпостоянные проводимость или сопротивление; дстатические характеристики нагрузки по напряжению; еслучайный ток Нагрузка задается постоянным по модулю и фазе током рис.Такая форма представления нагрузки принимается при всех расчетах распределительных сетей низкого напряжения...
74337. Статические характеристики электрических нагрузок 75 KB
  Зависимости показывающие изменение активной и реактивной мощности и от частоты f и подведенного напряжения U при медленных изменениях менее 1 сек этих параметров называют статическими характеристиками нагрузки СХН. Полученные при этом СХН называются естественными. Примерный состав нагрузки соответствующий типовым СХН Асинхронные двигатели...
74338. Представление генераторов при расчете установившихся режимов эл.передач ЭЭС. 105 KB
  В расчетах установившихся режимов электрических сетей и систем как правило не учитываются и а генератор представляется источником подключенным к шинам генераторного напряжения. Обычно для генерирующих узлов при фиксированных и не известны модуль и фаза напряжения узла и либо активные и реактивные составляющие напряжения и . Постоянные активная мощность и модуль напряжения В этом случае переменными являются как правило реактивная мощность и фаза напряжения. Задание постоянного модуля напряжения при соответствует реальным...
74339. Моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП 210.5 KB
  Характерные данные и основные соотношения между параметрами схем замещения ЛЭП. Выше приведена характеристика отдельных элементов схем замещения линий. При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы
74340. Особенности моделирования воздушных линий электропередачи со стальными проводами 116.5 KB
  Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.
74341. Моделирование протяженных линий эл.передачи напряжением 330-750 кВ 38 KB
  Линии электропередачи с номинальным напряжением 330 500 750 кВ разделяют посредством переключательных пунктов на участки в 250 350 км что локализует и уменьшает влияние поврежденных участков на изменение параметров режима и устойчивость работы сети рис. Такое построение линии а также включение промежуточных подстанций разбивает электропередачу на участки и ее удобно моделировать цепочной схемой замещения. Протяженные линии в режиме минимальных нагрузок имеют избыток реактивной мощности генерируемой линией. Для компенсации этой...
74342. Режим передачи активной мощности для идеализированной электропередачи. Условия передачи активной мощности 319.5 KB
  Отложим вектор фазного напряжения U1ф в начале линии по вещественной оси. Под углом φ к нему построим вектор тока I в линии. В результате получим падение напряжения ΔU и вектор фазного напряжения U2ф в конце линии. Линия без потерь: а схема замещения; б векторная диаграмма; в угловая характеристика мощности Тогда активная мощность в начале линии 10.