2102

Коэффициент направленного действия и коэффициент усиления передающей антенны

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

КНД передающей антенны определяется сравнением данной антенны с некоторой эталонной антенной, направленные свойства которой хорошо известны. В качестве эталонных широко используются: совершенно ненаправленный (изотропный) излучатель, диполь Герца, полуволновой вибратор.

Русский

2013-01-06

24.31 KB

88 чел.

Коэффициент направленного действия и коэффициент усиления передающей антенны.

КНД передающей антенны определяется сравнением данной антенны с некоторой эталонной антенной, направленные свойства которой хорошо известны. В качестве эталонных широко используются: совершенно ненаправленный (изотропный) излучатель, диполь Герца, полуволновой вибратор. Предлагается, что КПД эталонных антенн равен 100%

КНД антенны в направлении  называется отношение угловой плотности , создаваемой в этом направлении данной антенной, к угловой плотности мощности , создаваемой в этом же направлении эталонной антенны, при условии равенства полных мощностей излучения рассматриваемой и эталонных антенн:

при

Другое определение, введенное А.А. Пистолькорсом: КНД антенны называется число, показывающее, во сколько раз нужно увеличить мощность излучения эталонной антенны для того, чтобы в заданном направлении получить одинаковые угловые плотности мощности, а следовательно, при одинаковых расстояниях - одинаковые напряженности поля:

при  или и

Из определения ДН по мощности следует, что

где  – угловая плотность мощности в направлении максимума излучения,

- нормированная ДН по мощности.

Учитывая это, получаем:

где  – КНД в направлении излучения данной антенны. Таким образом, КНД зависит от угловых координат и эта зависимость определяется ДН антенны по мощности. Сравнивая антенны, сравнивают их КНД, то обычно имеют в виду макс, значения КНД.

Коэффициент усиления антенны (КУ) определяется так же, как и КНД, только сравниваются не мощности излучения, а мощности, подводимые к антеннам. Для эталона антенны мощность излучения и подводимая мощность равны, т.к. ее КПД принят равным 100%. Реальные антенны имеют потери и их мощность излучения меньше подводимой мощности, на величину потерь.

Выражение для применительно к КУ имеет вид:

при

Т.к. то

Для направления максимума ДН:

Пересчет КНД при переходе от одной эталонной антенны к другой часто требуется на практике и выглядит как:

где  - КНД антенны по отношению к первому эталону,  - ко второму эталону,  – КНД второго эталона по отношению к первому. Т.к. для эталонных антенн используется отсчет КНД только в максимуме их ДН, то величина  не зависит от угловых координат.

Расчет КНД часто выполняется по известному полю антенны в дальней зоне, хотя могут быть использованы и другие методы.

Положим, что антенна помещена в начале сферической системы координат и находится в свободном пространстве. Антенна излучает поле линейной поляризации и амплитуда этого поля известна во всех точках поверхности сферы радиуса  , т.е. известна ДН по полю

.

В качестве эталона возьмем изотропную антенну. Угловая плотность мощности для нее: (телесный угол для сферы равен )

Из условия , воспользовавшись формулой для мощности излучения антенн:

т.к.  , а , получим

В направлении максим. излучения , поэтому:

Отсюда следует, что. КНД однозначно определяется нормированной ДН, что существенно упрощает многие расчеты.

КНД элементарных излучателей по отношению к изотропному излучателю. Нормированная ДН диполя Герца имеет вид . Подставляя это выражение в предыдущую формулу имеем: .

Для излучателя Гюйгенса ДН по модулю электрического вектора записывается в виде  Отсюда, после интегрирования – D0 = 3.


 

А также другие работы, которые могут Вас заинтересовать

21854. Управление геомеханическими процессами при подработке водных объектов 776.5 KB
  Подработка переходных и специфических водных объектов системами с обрушением налегающих пород. гравитационной воды в порах и трещинах скальных горных пород или их отвалов пленочной воды в порах глинистых и песчаноглинистых пород и техногенных отложений. Линейные Сели ледники Подземные Площадные Псевдоплывунные породы. Линейные Разломы зоны дробления заполненные водой и псевдоплывунными породами Специфические Поверхностные Площадные Торфяники золоотвалы отвалы песчаноглинистых пород.
21855. Управление геомеханическими процессами при комбинированной разработке месторождений полезных ископаемых 474.5 KB
  Особенности напряжённодеформированного состояния опорных и потолочных целиков в зоне влияния карьера. Погашение подземных пустот в бортах и под дном карьера. Важно также знать допустимые вертикальные обнажения пород в пустотах выходящих на уступы карьера. Определение безопасной толщины потолочного целика над подземными пустотами между уступами карьера и подземными пустотами.
21856. Управление геомеханическими процессами в условиях динамических проявлений горного давления 2.48 MB
  Способы предупреждения горных ударов и внезапных выбросов пород и газа. Наряду со статическими формами проявлений горного давления в массивах горных пород могут происходить динамические внезапные разрушения участков массива пород находящихся в определенных условиях напряженного состояния при больших действующих напряжениях. При ведении же горных работ таковыми являются собственно динамические явления: шелушения горных пород стреляния динамическое заколообразование горные удары горнотектонические удары техногенные землетрясения; ...
21857. Методы охраны объектов и сооружений в зоне влияния горных работ 335.5 KB
  Методы охраны объектов и сооружений в зоне влияния горных работ. Методы ведения горных работ при подработке сооружений. Конструктивные меры защиты подрабатываемых сооружений. Для защиты объектов и сооружений от вредного влияния подземных горных разработок и предотвращения прорывов воды в горные выработки применяют различные меры охраны которые условно можно разделить на четыре группы: профилактические горнотехнические конструктивные комплексные.
21858. Взаимосвязь геомеханических процессов в массивах пород с методами ведения горных работ и естественным геомеханическим состоянием массива 132.5 KB
  Взаимосвязь геомеханических процессов в массивах пород с методами ведения горных работ и естественным геомеханическим состоянием массива. Анализ современных подходов к вопросам проблемы Управление состоянием массива пород и перспективные направления её решения с целью повышения эффективности и безопасности подземных горных работ и сокращения вредных воздействий на окружающую среду. При этом освещаются основы этой науки науки о прочности устойчивости и деформируемости массивов горных пород горнотехнических объектов и сооружений в поле...
21859. Факторы, определяющие формы проявления геомеханических процессов 272.5 KB
  Состав строение и физические свойства горных пород. Структурные особенности массивов горных пород. Естественное напряженное состояние массивов пород. Основным предметом изучения в геомеханике является массив горных пород и механические процессы происходящие в нём.
21860. Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений 2.82 MB
  Управление геомеханическими процессами при проведении капитальных выработок и строительстве подземных сооружений. Задачи управления горным давлением и основные принципы обеспечения устойчивости горных выработок. Закономерности изменения напряженного состояния приконтурного массива выработок при их различных положениях в пространстве относительно поля напряжений в массиве пород и преобладающих структурных неоднородностях. Выбор и обоснование оптимальных форм и размеров поперечных сечений рациональной ориентации выработок.
21861. Особенности напряжённо-деформированного состояния массива пород вокруг очистных выработок 266 KB
  Особенности напряжённодеформированного состояния массива пород вокруг очистных выработок. Характерные виды проявлений горного давления в очистных выработках. Взаимное влияние очистных выработок при разработке обособленных и сближенных пластов и жил. Основные принципы выбора способа управления горным давлением при ведении очистных работ.
21862. Управление геомеханическими процессами при системах с естественным поддержанием выработанного пространства 848 KB
  В этой группе систем разработки поддержание очистного пространства осуществляется за счет естественной устойчивости обнажений массивов полезного ископаемого и вмещающих пород. Следует заметить что данная группа систем разработки применяется как правило в условиях устойчивых массивов пород. Очевидно в такой постановке вопроса устойчивое состояние любых элементов системы разработки определяется соотношением действующих в массиве пород напряжений и деформационнопрочностных свойств пород слагающих рассматриваемый элемент. Если конкретно...