2103

Поляризационные характеристики передающей антенны

Доклад

Коммуникация, связь, радиоэлектроника и цифровые приборы

Поляризация передающей антенны определяется по поляризации ее поля излучения, как правило, по электрическому вектору, который, в общем случае, с течением времени изменяет как свою величину, так и направление в каждой точке пространства.

Русский

2013-01-06

144.83 KB

52 чел.

Поляризационные характеристики передающей антенны.

Поляризация передающей антенны определяется по поляризации ее поля излучения, как правило, по электрическому вектору, который, в общем случае, с течением времени изменяет как свою величину, так и направление в каждой точке пространства.

При изучении поляризации характеристик удобно ввести две плоскости – плоскость поляризации Π и картинную плоскость К.

Плоскость поляризации содержит в себе вектор  и направление распространения в точку наблюдения М. Если вектор вращается вокруг направления распространения, то вместе с ним вращается и плоскость поляризации. Поляризация называется линейной, если плоскость поляризации с течением времени не меняет своего положения в пространстве. При этом различают: горизонтальную поляризацию – векторе  параллелен поверхности земли; вертикальную поляризацию - плоскость поляризации перпендикулярна поверх, земли; наклонную поляризацию.

Поляризация называется, если плоскость поляризации вращается, делая один оборот за период ВЧ колебаний поля.

Картинная плоскость перпендикулярна направлению распространения и проходит через точку наблюдения – вектор  находится в картинной плоскости. Здесь используется прямоугольную систему координат с началом наблюдения в точке наблюдения М – оси совмещены с ортами сферической системы координат в точке М.

Эллиптическая поляризация является наиболее общим случаем поляризации, когда конец электронного вектора описывает в картинной плоскости эллипс, вращаясь со средней угловой скоростью ω.

Поляризационные характеристики поля и, следственно, антенны полностью определяются следующими параметрами эллипса:

  1. углом наклона γ большой оси эллипса к оси θ выбранной системы координат – угол наклона поляризационного эллипса;
  2. коэффициент равномерности эллиптической поляризации:
  3. направлением вращения электрического вектора: эллиптическая поляризация правого и левого вращения.

Поляризационная характеристика – это зависимость ЭДС в приемной антенне линейной поляризации, принимающей электромагнитной волны от рассматриваемой передающей антенны, от угла поворота Δ этой антенны в картинной плоскости. Для каждого положения приемной антенны амплитуда наведенной ЭДС пропорциональна наибольшей величине проекции вращающегося электронного вектора на ось диполя. Если для всех углов Δ найти эту наибольшую проекцию и изобразить ее в виде радиуса-вектора в полярной системе координат на картинной плоскости, то концы векторов дадут кривую, которая является поляризационной характеристикой.

В общем случае для каждого направления в пространстве θ, φ будет своя поляризационная характеристика. Например: вырожденный эллипс поляризации и поляризационная характеристика: для случая линейной наклонной поляризации, а так же, для круговой поляризации.

Направленные свойства антенн вращающейся поляризации характеризуют обычно парциальными ДН для взаимно перпендикулярных компонент. Эти парциальные ДН в нормированном виде записываются как  для составляющей  и  для составляющей .

Так же вводится понятие полной амплитуды волны:

которая связана с угловой плотностью мощности соотношением:

Мы рассматривали поляризационные характеристики антенны с неизменяемыми во времени параметрами при излучении ею монохроматических волн. Поле такой антенны называется полностью поляризованным. Если преднамеренно или случайно изменяются во времени величины  и γ , но вектор  совершает вращательное движение с некоторой средней частотой ω, то поле называется частично поляризованным. Если же положение самого вектора  для каждого момента времени является случайным, то поле является неполяризованным (деполяризованным). Характерным примером неполяризованного электромагнитного поля является поле, излучаемое нагретыми телами.

Диапазон рабочих частот антенны – интервал от  до  в котором все параметры антенны не выходят из заданных пределов. Очевидно, этот диапазон: будет определятся тем параметром, который быстрее других выходит из заданных пределов при изменении частоты, чаще всего это входное сопротивление (коэффициент согласования).

При /≤1,7–2,0 обычно говорят о полосе рабочих частот антенны . Ширину полосы рабочих частот определяют в единицах частоты или в процентах к средней частоте диапазона.

При - узкополосная (резонансная) антенна

>10% - широкополосная

>100% - широкодиапазонная и ее свойства характеризуют коэффициентом перекрытия диапазона

Теорема подобия: антенна, работающая при частоте колебаний  не изменит свои параметры, если при новой частоте колебаний  ее геометрические размеры будут уменьшены в n раз (), электрическая проводимость будет увеличена в n раз(), а электрическая и магнитная проницаемости материалов и среды останутся без изменения. Величина n – коэффициент масштабного пересчета или коэффициент подобия антенн.

На основании этой теоремы производится моделирование при разработке и исследований, антенн. Строится модель антенны уменьшенная в n - раз и производится измерение ДН, КНД, входное сопротивления и т.п. на частоте в n - раз большей рабочей частоты натуральной антенны, при соблюдении всех прочих условий.


 

А также другие работы, которые могут Вас заинтересовать

14316. Визначення коефіцієнта поверхневого натягу методом відриву краплі 54.5 KB
  Лабораторна робота №9 Визначення коефіцієнта поверхневого натягу методом відриву краплі Мета роботи : 1. Вивчити явище поверхневого натягу; 2. Визначити коефіцієнт поверхневого натягу рідині. Прилади та обладнання : Скляна бюретка з краном. К
14317. Визначення коефіцієнта Пуассона газу методом адіабатичного розширення 68 KB
  Лабораторна робота №11 Визначення коефіцієнта Пуассона газу методом адіабатичного розширення Обладнання Установка для визначення коефіцієнта Пуассона газу методом адіабатичного розширення Метод вимірювання і опис у
14318. Вивчення коефіцієнта в'язкості рідини методом Стокса 97 KB
  Лабораторна робота № 8 Вивчення коефіцієнта вязкості рідини методом Стокса Мета роботи: 1. Вивчити механізм явища переносу внутрішнє тертя. 2. Визначити коефіцієнт внутрішнього тертя рідин за швидкістю падіння кульки. Прилади та матеріали: Скляний ци
14319. Молекулярна фізика 5.27 MB
  ФІЗИКА Методичні рекомендації до модуля 3 Молекулярна фізика для виконання лабораторних робіт студентами денної та заочної форм навчання напрямів підготовки: 6.100102 Процеси машини та обладнання в агропромисловому виробництві 6.010104 Професійн...
14320. Внутрішній фотоефект у напівпровідниках 58 KB
  Лабораторна робота № 12 Внутрішній фотоефект у напівпровідниках Мета роботи: експериментально встановити залежність опору напівпровідника від величини падаючого на нього потоку електромагнітного випромінювання та визначити чутливість фото резистора. Прилади та о...
14321. Визначення опору методом мостової схеми 63 KB
  Лабораторна робота №3 Визначення опору методом мостової схеми Мета роботи: Вивчити метод мостової схеми і визначити невідомі опори цим методом. Прилади і приналежності: відомий опір R=470 Ом невідомі опори Rx1 Rx2 Rx3; реохорд і гальванометр нульіндикатор; джерело по...
14323. Визначення магнітного поля колового струму і визначення горизонтальної складової напруженості магнітного поля Землі 67 KB
  Лабораторна робота №7 Визначення магнітного поля колового струму і визначення горизонтальної складової напруженості магнітного поля Землі Мета роботи: Визначити залежність магнітного поля колового струму від сили струму радіуса кільцевого провідника і числ
14324. ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ОПОРУ НАПІВПРОВІДНИКІВ ВІД ТЕМПЕРАТУРИ 107.5 KB
  ЛАБОРАТОРНА РОБОТА № 9 ДОСЛІДЖЕННЯ ЗАЛЕЖНОСТІ ОПОРУ НАПІВПРОВІДНИКІВ ВІД ТЕМПЕРАТУРИ Мета роботи: Дослідним шляхом встановити закон зміни опору напівпровідника при його нагріванні визначити ширину забороненої зони і концентрацію зарядів у напівпровідник