21037

Исследование электрической дуги постоянного тока

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Целью работы является исследование неподвижной дуги постоянного тока определение вольтамперной характеристики дуги между электродами выполненными из различных материалов исследование влияния длины дуги и шунтирующего сопротивления на характеристики дуги. Одной из основных характеристик дуги является ее вольтамперная характеристика зависимость напряжения на дуге от тока дуги. С ростом тока дуги вследствие разогрева дугового столба ее сопротивление уменьшается быстрее нежели растет ток.

Русский

2013-08-02

134.5 KB

14 чел.

Лабораторная работа №14

 Исследование электрической дуги постоянного тока.

Целью работы является исследование неподвижной дуги постоянного тока, определение вольт-амперной характеристики дуги между электродами, выполненными из различных материалов, исследование влияния длины дуги и шунтирующего сопротивления на характеристики дуги.

Общие сведения

Электрическая дуга является разновидностью газового разряда, характеризующегося высокой плотностью тока (десятки - сотни А/мм2) и высокой температурой газового столба (5000-10000 К).

Одной из основных характеристик дуги является ее вольт-амперная характеристика - зависимость напряжения на дуге от тока дуги. Она обычно имеет падающий характер (рис.1). С ростом тока дуги вследствие разогрева дугового столба ее сопротивление уменьшается быстрее, нежели растет ток.

При рассмотрении вопроса устойчивости горения дуги будем ориентироваться на простейшую электрическую цепь (рис.2), для которой справедливо соотношение

       

или

                            

Для установившегося состояния стационарная дуга)

получим

Для удобства анализа на рис.3 представлены внешняя реостатная характеристика цепи

UсLR=F(i) и вольт-амперная характеристика Uд(i). Заштрихованная область представляет величину L di/dt. Условие (I) соблюдается в точках 1 и 2, однако устойчивое состояние дуги обеспечивается лишь в точке I .

Таким образом, если вольт-амперная характеристика пути пересекается с внешней характеристикой цепи, то существует хотя бы одна точка, в которой дуга горит устойчиво. Для того что бы дуга погасла, необходимо вольт-амперную характеристику дуги поднять выше реостатной  характеристики цепи (рис.3, пунктир). Условия, при которых эти характеристики касаются в одной точке, называются критическими, а ток, соответствующий точке касания характеристик,- критическим Iкр (рис.4). Критические условия можно создать, изменяя параметры цепи (например, (Uс или R ) или параметры дуги (например, ее длину l ). При увеличении длины дуги вследствие увеличения поверхности охлаждения, температура дуги уменьшается, ее сопротивление увеличивается, следовательно, при том же токе напряжение на дуге будет больше, а вольт-амперная характеристика выше. Длина дуги, соответствующая критическим условиям, называется критической lкр. Критическая длина свободной дуги в воздухе может быть с некоторым приближением рассчитала по выражению [1] :

lкр=4,8*10-3 UcUc/R

Если обозначить Uc/R= Iкз    - ток при короткозамкнутых электродах, то

lкр=4,8*10-3 Uc√ Iкз

Эффективным средством облегчения гашения дуги является шунтирование цуги активным сопротивлением (рис.5).

Если при шунтировании дуги часть общего тока I0 ответвляется в шунт IШ , то ток дуги IЭ уменьшается, что способствует облегчению гашения дуги. Для того чтобы оценить условия гашения дуги, необходимо построить зависимости напряжения на дуге от общего тока UД=f(I0) и сравнить ее с реостатной характеристикой цепи. Соответствующие построения приведены на рис.5,б, где представлена вольт-амперная характеристика дуги без шунта-1, реостатная характеристика цепи -2 и вольт-амперная характеристика шунта UШ=f(IШ)-3. В цепи без шунта характеристики I и 2 пересекаются, поэтому гашения цуги не произойдет. При введении шунта общий ток будет равен I0= Iд+ IШ.

Для получения характеристики 4 необходимо при одинаковых напряжениях сложить характеристики- 1 и 3. В этом случае зависимость напряжения на дуге от общего тока будет лежать выше реостатной характеристики цепи и дуга гореть не будет (Iд=0), весь ток потечет через шунт (IШ= Uc/R+RШ ). Для отключения этого тока служит выключатель К.

Сопротивление шунта должно быть меньше критического RШ кр при этом кривая UД=f(I0) касается реостатной характеристики в одной точке (рис.6).

В заключение отметим, что, помимо облегчения процесса гашения дуги, шунтирование дуги активным сопротивлением -уменьшает перенапряжение при гашении цуги постоянного тока [1] .

Испытательная установка.

Испытательная установка представлена на рис. 7.   На асбоцементной плите I закреплены две металлические стойки 2, к которым подводится ток. К стойкам прикреплены

держатели 3, к которым с помощью винтов 4 крепится неподвижный  электрод 6, перемещающийся при вращений рукоятки 7. Установка закрывается металлическим съемным кожухом. В задней крыше установки имеется отверстие, а на плите напротив отверстия закреплен экран - шкала, на которой проецируется дуга. По шкале можно визуально определить длину дуги. В схеме установки предусмотрена блокировка, обеспечивающая возможность проведения исследований только при закрытом кожухе. Схема испытаний представлена на рис. 8.

Ток в цепи изменяется о помощью реостата R . Необходимое сопротивление шунта устанавливается о помощью переключателя П ( Rш = ∞ ; 400; 200; 100; 68; 51; 22 Ом). Кнопка К1 служит для закорачивания электродов, выключатель К2 -для подключения шунтирующих сопротивлений. Защитное реле (ЗP) и конечные выключатели (КВ) обеспечивают блокировку.

Задание.

1. Снять вольт-амперные характеристики дуги для медных, латунных и стальных электродов при lД =3; 6 мм ( I = 5+0 А). Одновременно измерить токи при к.з. электродах Iкз в момент угасания дуги.

2. По данным п.1 построить вольт-амперные характеристики дуги и критические реостатные характеристики цепи, зависимости сопротивления дуги Rд и мощности дуга Рд  от тока. Определить критическое сопротивление цепи Rкр , при котором обеспечивается погасание дуги.

3. Для стальных электродов снять и построить зависимость критической длины дуге от тока  Iкз , сравнить ее с расчетной.

4. Снять зависимости напряжения на дуге от общего тока при шунтировании дуги сопротивлением (lД = 6 мм ; Rш =∞; 200; 68 Ом, электроды стальные).

5. По данным п. 4 построить вольт-амперные характеристики дуги и критические реостатные характеристики цепи. Определить критические сопротивления цепи. Полученные, данные сравнить с данными п.2.

6. Графическим путем, используя данные п.1, построить зависимость напряжения на дуге от общего тока при шунтировании дуги сопротивлением  Rш = 200 Ом (lД = 6 мм, электроды стальные), определить Rкр , полученные значения сравнять с пп.4и 5.


 

А также другие работы, которые могут Вас заинтересовать

21452. Линейные неоднородные дифференциальные уравнения 256.5 KB
  Линейные неоднородные дифференциальные уравнения. Будем рассматривать линейные неоднородные уравнения вида 1 Это уравнение сохраняя прежние обозначения запишем в виде Если при в уравнении 1 все коэффициенты и правая часть fx непрерывны то оно имеет единственное решение удовлетворяющее условиям где – любые действительные числа а – любая точка интервала . Действительно правая часть уравнения 1 В окрестности рассматриваемых...
21453. Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел 392 KB
  Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел. При этом числа x и y называются вещественной и мнимой частями соответственного комплексного числа z. Два комплексных числа и считаются равными между собой тогда и только тогда когда равны их вещественные и мнимые части т.
21454. Линейные однородные дифференциальные уравнения с постоянными коэффициентами 234 KB
  Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Оператор L можно представить в следующем виде 1б где – корни характеристического уравнения 4 – их кратности. При n=2 имеем причем где – корни характеристического уравнения Далее Пусть теперь при некотором: где мы...
21455. Системы линейных дифференциальных уравнений 293 KB
  Системы линейных дифференциальных уравнений. Напомним что достаточными условиями существования и единственности решения системы обыкновенных дифференциальных уравнений 1 удовлетворяющего начальным условиям 2 являются: непрерывность всех функций в окрестности начальных значений; выполнение условия Липшица для всех...
21456. Системы линейных дифференциальных уравнений с постоянными коэффициентами 282 KB
  Системы линейных дифференциальных уравнений с постоянными коэффициентами. Итак общее решение однородной системы 1 имеет вид 6 причем векторы 7 частные решения системы 1 которые могут быть получены следующим образом. Итак решения линейно...
21457. Матричная экспонента 394 KB
  а – матрица j – й столбец которой есть решение системы 1а с начальными условиями т. матрица имеет вид и удовлетворяет уравнению Тогда вектор t – решение системы 1а с начальным условием может быть записан в виде т. Запишем теперь jе решение уравнения 1а удовлетворяющее начальному условию где – диагональная матрица вектор столбец коэффициентов и положим где – матрица коэффициентов . Теперь окончательно имеем...
21458. Спектральные приборы 519 KB
  различаются методами спектрометрии приёмниками излучения исследуемым рабочим диапазоном длин волн и др. Форма отверстия в равномерно освещенном экране 1 соответствует функции f описывающей исследуемый спектр распределение энергии излучения по длинам волн . группа 2 информация об исследуемом спектре получается путём одновременной регистрации без сканирования по  несколлькими приёмниками потоков излучения разных длин волн ’ ’’ ’’’ .
21459. Управление света светом 870.5 KB
  ставит очень амбициозную задачу создание устройств выполняющих функции управления характеристиками оптического излучения с помощью другого оптического излучения. Предлагается воспользоваться свойствами поляризованного электромагнитного оптического излучения а именно использовать эффект оптического гашения который описан например в [3]. 1 Если четвертьволновую пластинку P1 установить так чтобы её быстрая ось была ориентирована под углом к оси OX то для излучения прошедшего через пластинку P1 получим = 1 = . 2 Согласно [4]...
21460. Применение лазерного излучения для управления движением атомами и ионами 789.5 KB
  Этот эффект называется охлаждением атомов давлением лазерного излучения. Методы позволяющие с помощью лазерного излучения охлаждать атомы основаны на эффекте вязкой жидкости оптическая патока в которой атомы медленно перемещаются. При охлаждении вещества его энергия и энтропия понижаются поэтому процесс охлаждения возможен если энергия и энтропия излучения после взаимодействия с веществом повышаются.