2114

Детали машин

Конспект

Логистика и транспорт

Деталь, узел. Комплект, изделие, машинный агрегат. Классификация деталей машин. Основные критерии работоспособности деталей машин. Общие сведения зубчатых передач, классификация. Геометрические параметры и их соотношения в косозубых цилиндрических зубчатых передачах. Подшипники качения. Условные обозначения. Виды повреждений.

Русский

2013-01-06

311.31 KB

189 чел.

ДЕТАЛИ МАШИН

1 Деталь, узел. Комплект, изделие, машинный агрегат. Классификация деталей машин:

ДЕТАЛЬ – (франц. detail – кусочек) – изделие, изготовленное из однородного по наименованию и марке материала без применения сборочных операций (ГОСТ 2.101-68).

УЗЕЛ – законченная сборочная единица, состоящая из деталей общего функционального назначения и выполняющая определенную функцию в изделиях одного назначения только совместно с другими составными частями изделия (муфты, подшипники качения и др.).

КОМПЛЕКТ (ремкомплект) – это набор отдельных деталей, служащее для совершения таких операции как сборка, сверление, фрезерование или для ремонта определенных узлов машин. Например, набор накладных или торцевых ключей, отверток, сверл, фрез или ремкомплект карбюратора, топливного насоса и так далее.

МАШИННЫМ АГРЕГАТОМ называется техническая система, состоящая из одной или нескольких соединенных последовательно или параллельно машин и предназначенная для выполнения каких-либо требуемых функций. Обычно в состав машинного агрегата входят: двигатель, передаточный механизм и рабочая или энергетическая машина. В настоящее время в состав машинного агрегата часто включается контрольно-управляющая или кибернетическая машина. Передаточный механизм в машинном агрегате необходим для согласования механических характеристик двигателя с механическими характеристиками рабочей или энергетической машины.

ИЗДЕЛИЕ – любой предмет или набор предметов производства, изготовленный предприятием. Под изделием понимают любую продукцию, изготовляемую по конструкторской документации. Видами изделий являются детали, комплекты, узлы, механизмы, агрегаты, машины и комплексы. Изделия, в зависимости от наличия или отсутствия в них составных частей, делятся: 1) на неспецифицированные (детали) — не имеющие составных частей; 2) на специфицированные (сборочные единицы, комплексы, комплекты) — состоящие из двух и более составных частей. Составными частями машины являются: деталь, сборочная единица (узел), комплекс и комплект.

Классификация деталей машин

Не существует абсолютной, полной и завершённой классификации всех существующих деталей машин, т.к. конструкции их многообразны и, к тому же, постоянно разрабатываются новые.

Для ориентирования в бесконечном многообразии детали машин классифицируют на типовые группы по характеру их использования.

- ПЕРЕДАЧИ предназначены для передачи и преобразования движения, энергии в машинах. Их разделяют на передачи зацеплением, передающие энергию посредством взаимного зацепления зубьев (зубчатые, червячные и цепные), и передачи трением, передающие энергию посредством сил трения, вызываемых начальным натяжением ремня (ременные передачи) или прижатием одного катка к другому (фрикционные передачи).

- ВАЛЫ и ОСИ. Валы служат для передачи вращающего момента вдоль своей оси и для поддержания вращающихся деталей передач (зубчатые колёса, шкивы звёздочки), устанавливаемых на валах. Оси служат для поддержания вращающихся, деталей без передачи полезных вращающих моментов.

- ОПОРЫ служат для установки валов и осей.

- ПОДШИРНИКИ. Предназначены для закрепления валов и осей в пространстве. Оставляют валам и осям только одну степень свободы - вращение вокруг собственной оси. Подшипники делятся на две группы в зависимости от вида трения в них: а) качения; б) скольжения.

- МУФТЫ предназначены для передачи крутящего момента с одного вала на другой. Муфты бывают постоянными, не допускающие разъединения валов при работе машин и сцепные, допускающие сцепление и расцепление валов.

- СОЕДИНИТЕЛЬНЫЕ ДЕТАЛИ (СОЕДИНЕНИЯ) соединяют детали между собой.

Они бывают двух видов:

а) разъемные - их можно разобрать без разрушения. К ним относятся резьбовые, штифтовые, шпоночные, шлицевые, клеммовые;

б) неразъемные - разъединение деталей невозможно без их разрушения или связано с опасностью их повреждения. К ним относятся сварочное, клеевое, заклепочное, прессовое соединения.

- УПРУГИЕ ЭЛЕМЕНТЫ. Их применяют: а) для защиты от вибраций и ударов; б) для совершения в течение длительного времени полезной работы путем предварительного аккумулирования или накопления энергии (пружины в часах); в) для создания натяга, осуществления обратного хода в кулачковых и других механизмах и т.д.

- КОРПУСНЫЕ ДЕТАЛИ организуют внутри себя пространство для размещения всех остальных деталей, обеспечивают их защиту.

- ДЕТАЛИ СПЕЦИФИЧЕСКИЕ. К ним можно отнести механизмы управления, устройства для защиты от загрязнений, для смазывания и т.д.

Рамки учебного курса не позволяют изучить все разновидности деталей машин и все нюансы проектирования. Однако знание, по крайней мере, типовых деталей и общих принципов конструирования машин даёт инженеру надёжный фундамент и мощный инструмент для выполнения проектных работ практически любой сложности.

2 Основные критерии работоспособности деталей машин

Критерий - это «мерило значения чего-либо», граница допустимости решения, ограничение целевой функции.

Важнейшими критериями работоспособности деталей машин являются прочность, жесткость, износостойкость, теплостойкость,вибрационная устойчивость.

При конструировании работоспособность деталей обеспечивают выбором материала и расчетом размеров по основному критерию. Выбор критерия обусловлен характером воздействия нагрузки, среды и вызываемым видом отказа.

В настоящее время самым распространенным критерием работоспособности является прочность.

Прочность - это способность детали сопротивляться разрушению или потере формы под действием приложенных к детали нагрузок. Этому критерию должны удовлетворять все детали и узлы.

На основании принципа независимости действия сил любое сложное напряженное состояние можно разложить на простые виды:растяжение, сжатие, изгиб, сдвиг (кручение), срез - это внутренние напряжения в сечениях деталей.

На поверхности соприкосновения (контакта) двух деталей под нагрузкой возникают поверхностные напряжения. Если размеры площадок контакта одного порядка с другими размерами деталей, то говорят о напряжениях смятия см. Если хотя бы один из размеров площадки контакта существенно мал по сравнению с другими размерами, то возникают контактные напряжения.

4 Общие сведения зубчатых передач, классификация

Механизм, в котором два подвижных звена являются зубчатыми колесами, образующими с неподвижным звеном вращательную или поступательную пару, называют зубчатой передачей

В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).

Зубчатые передачи — наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 100 м/с), мощностей (до десятков тысяч киловатт).

Основные достоинства зубчатых передач по сравнению с другими передачами:

- технологичность, постоянство передаточного числа;

- высокая нагрузочная способность;

- высокий КПД (до 0,97-0,99 для одной пары колес);

- малые габаритные размеры по сравнению с другими видами передач при равных условиях;

- большая надежность в работе, простота обслуживания;

- сравнительно малые нагрузки на валы и опоры.

 

К недостаткам зубчатых передач следует отнести:

- невозможность бесступенчатого изменения передаточного числа;

- высокие требования к точности изготовления и монтажа;

- шум при больших скоростях; плохие амортизирующие свойства;

- громоздкость при больших расстояниях между осями ведущего и ведомого валов;

- потребность в специальном оборудовании и инструменте для нарезания зубьев;

- зубчатая передача не предохраняет машину от возможных опасных перегрузок.

 

Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):

- по взаимному расположению осей колес — с параллельными осями (цилиндрические, см. рис. 1, а—д), с пересекающимися осями (конические, см. рис. 1, ж—и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);

- по расположению зубьев относительно образующих колес — прямозубые, косозубые, шевронные и с криволинейным зубом;

- по конструктивному оформлению — открытые и закрытые;

- по окружной скорости — тихоходные (до 3 м/с), для средних скоростей (3—15 м/с), быстроходные (св. 15 м/с);

- по числу ступеней — одно- и многоступенчатые;

- по расположению зубьев в передаче и колесах — внешнее, внутреннее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);

- по форме профиля зуба — с эвольвентными, круговыми;

- по точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации.

Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинствоэвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.

Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.

Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

Конические передачи применяют только в тех случаях, когда это необходимо по условиям компоновки машины; винтовые — лишь в специальных случаях.

Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.

 

5 Эвольвентное зацепление

Подавляющее большинство зубчатых передач, применяемых в технике, имеет зубчатые колеса с эвольвентным профилем.

Эвольвента как кривая для формирования профиля зуба была предложена Л. Эйлером. Она обладает значительными преимуществами перед другими кривыми, применяемыми для этой цели, – удовлетворяет основному закону зацепления, обеспечивает постоянство передаточного отношения, нечувствительна к неточностям межосевого расстояния (что облегчает сборку), наиболее проста и технологична в изготовлении, легко стандартизируется (что особенно важно для такого распространенного вида механизмов как зубчатые передачи).

Эвольвента – это траектория движения точки, принадлежащей прямой, перекатывающейся без скольжения по окружности. Данная прямая называется производящей прямой, а окружность, по которой она перекатывается – основной окружностью

Эвольвента обладает следующими свойствами, которые используются в теории зацепления:

1) форма эвольвенты определяется радиусом основной окружности;

2) нормаль к эвольвенте в любой ее точке является касательной к основной окружности. Точка касания нормали с основной окружностью является центром кривизны эвольвенты в рассматриваемой точке;

3) эвольвенты одной и той же основной окружности являются эквидистантными (равноотстоящими друг от друга) кривыми.

Положение любой точки на эвольвенте может быть однозначно охарактеризовано диаметром окружности, на которой она расположена, а также характерными для эвольвенты углами: углом развернутости (обозначается ν), углом профиля (α), эвольвентным угломinvα (рисунок 38 б). На рисунке 38 б показаны эти углы для произвольно выбранной на эвольвенте точки Y, поэтому они имеют соответствующий индекс:

- νY – угол развернутости эвольвенты до точки у;

- αY – угол профиля в точке Y;

- invαY – эвольвентный угол в точке Y (на окружности диаметра dY ).

7 Геометрические параметры и их соотношения в прямозубых цилиндрических зубчатых передачах.

Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения

Зубчатую передачу с параллельными осями, у колес которой поверхности по диаметру выступов цилиндрические, называют цилиндрической.

Цилиндрическая прямозубая зубчатая передача состоит из двух или нескольких пар цилиндрических зубчатых колес с прямыми зубьями (рис.30). Эта передача наиболее проста в изготовлении. Применяется как в открытом, так и в закрытом исполнении.

Передаточное число и ограничивается габаритными размерами передачи. Для одной пары цилиндрических зубчатых колес .

Геометрические соотношения размеров прямозубой цилиндрической передачи с эвольвентным профилем зуба. Определим геометрические параметры прямозубой цилиндрической передачи в зависимости от модуля и числа зубьев и z).

Диаметр вершин зубьев  (рис. 31);

диаметр впадин .

Из равенства  делительный диаметр:

 или где.

Согласно стандарту высота головки зуба ; высота ножки зуба ; высота зуба . Отсюда диаметр вершин зубьев ; диаметр впадин .

Разница в высоте ножки одного колеса и высоте головки другого образует радиальный зазор

8 Геометрические параметры и их соотношения в косозубых цилиндрических зубчатых передачах.

Цилиндрические косозубые и шевронные зубчатые передачи. Устройство и основные геометрические и силовые соотношения

Косозубые зубчатые передачи, как и прямозубые, предназначены для передачи вращательного момента между параллельными валамя (рис. 36). У косозубых колес оси зубьев располагаются не по образующей делительного цилиндра, а по винтовой линии, составляющей с образующей угол (рис. 37). Угол наклона зубьев р принимают равным , он одинаков для обоих колес, но на одном из сопряженных колес зубья наклонены вправо, а на другом влево.

Передаточное число для одной пары колес может быть . В прямозубых передачах линия контакта параллельна оси, а в косозубых расположена по диагонали на поверхности зуба (контакт в прямозубыхпередачах осуществляется вдоль всей длины зуба, а в косозубых — сначала в точке увеличивается до прямой, «диагонально» захватывающей зуб, и постепенно уменьшается до точки).

Достоинства косозубых передач по сравнению с прямозубыми: уменьшение шума при работе; меньшие габаритные размеры; высокая плавность зацепления; большая нагрузочная способность; значительно меньшие дополнительные динамические нагрузки.

За счет наклона зуба в зацеплении косозубой передачи появляется осевая сила.

Направление осевой силы зависит от направления вращения колеса (рис. 37), направления винтовой линии зуба, а также от того, каким является колесо — ведущим или ведомым. Осевая сила дополнительно нагружает валы и опоры, что является недостатком косозубых передач.

 

В этих передачах допускают большой угол наклона зубьев (). Ввиду сложности изготовления шевронные передачи применяют реже, чем косозубые, т.е. в тех случаях, когда требуется передавать большую мощность и высокую скорость, а осевые нагрузки нежелательны

9 Силы в зацеплении

§ 10.3. Силы в зацеплении

В косозубой передаче нормальная сила Fn составляет угол β с торцом колеса (рис. 10.4). Разложив Fn на составляющие, получим:

радиальную силу

 

 

 

 

где Ft = 2T2/d2 — окружная сила; осевую силу

Fa = Ftig β.

При определении направлений сил учитывают направление вращения колес и направление наклона зуба (правое или левое).

 

Осевая сила Fa дополнительно нагружает подшипники, возра¬стая с увеличением β. По этой причине для косозубых колес при¬нимают β = 8... 18°. Наличие в зацеплении осевых сил является недостатком косозубой передачи.

§ 10.4. Расчет на контактную прочность

Вследствие наклонного расположения зубьев в косозубом зацеплении одновременно находится несколько пар зубьев, что уменьшает нагрузку на один зуб, повышая его прочность. Наклонное расположение зубьев уменьшает динамические нагрузки. Все эти особенности трудно учесть при выводе расчетных формул, поэтому расчет на прочность косозубых передач ведут по форму¬лам эквивалентных прямозубых передач с введением в них поправочных коэффициентов. По условиям прочности габариты косозубых передач получаются меньше, чем прямозубых.

 

10 Виды повреждений. Критерии работоспособности

Виды разрушения и критерии работоспособности

Подшипники скольжения, работающие в условиях граничного и полужидкостного трения, подвержены абразивному изнашиванию, заеданию (схватыванию) из-за разрушения граничных пленок смазки при высоких температурах, пластическому деформированию и усталостному разрушению.

Эти повреждения зависят от состояния и вязкости смазки, характера и величины удельной нагрузки, температуры и других параметров режима работы подшипника, а так же в значительной степени от материалов цапфы и вкладыша, которые должны образовывать антифрикционную пару. В соответствии с видами повреждений подшипников скольжения при граничном и полужидкостным трении их критериями работоспособности являются: износостойкость, теплостойкость (для предотвращения заедания), прочность.

Для подшипников скольжения жидкостного трения критерием работоспособности является наличие слоя смазки, достаточного для восприятия нагрузки, минимальная величина которого должна быть больше суммы высот неровностей поверхностей цапфы и вкладыша.

Для гидродинамических подшипников имеют место все перечисленные выше критерии работоспособности, так как в периоды пуска, медленного вращения и остановки они работают в условиях граничного и полужидкостного трения, вследствие чего возможно появление задиров, если не предусмотрена гидростатическая разгрузка.

Муфтами являются устройства, предназначенные для передачи вращающего момента между валами или валом и установленными на нем деталями (зубчатыми колесами, шкивами и др.).

Кроме передачи вращающего момента муфты выполняют и другие функции: обеспечивают взаимную неподвижность соединяемых деталей (глухие муфты); компенсируют в определенных пределах ошибки изготовления и монтажа соединяемых валов, а также осевые, радиальные, угловые и комбинированные смещения их осей (компенсирующие муфты); улучшают динамические характеристики привода (упругие муфты); ограничивают передаваемый момент ( предохранительные муфты); соединяют и разъединяют валы и другие детали на ходу или в неподвижном состоянии (сцепные управляемые муфты); передают момент только в одном направлении (обгонные муфты). Наиболее распространенные муфты стандартизованы. Среди паспортных данных (габариты, размеры посадочных мест, масса, момент инерции и др.) указывается передаваемый вращающий момент Т, Нм.

Из всего многообразия постоянных (нерасцепляемых) муфт ниже рассматриваются: глухие, компенсирующие, упругие и сильфонные муфты.

Глухие муфты (ГОСТ 24246) обеспечивают взаимную неподвижность соединяемых деталей. Их применение определяется, в основном, условиями монтажа и необходимостью ограничения размеров. Валы, соединяемые глухой муфтой, работают как одно целое, поэтому кроме вращающего момента муфта может воспринимать изгибающий момент, поперечные и осевые силы.

Простейшую конструкцию при минимальных радиальных габаритах имеет втулочная муфта. Усилие между валами и муфтой передается штифтами, работающими на срез, шпонками или зубчатыми (шлицевыми) соединениями, работающими на смятие. При монтаже и демонтаже соединяемые муфтой валы обычно смещаются в осевом направлении. Поэтому для втулочных муфт не используются посадки с гарантированным натягом. Эти муфты применяют для диаметров валов не более 60...70 мм.

Из глухих муфт наибольшее распространение получили фланцевые (поперечно-свертные) муфты по ГОСТ 20761, в которых вращающий момент передаётся за счет работы болтов на срез при их установке без зазора (исполнение I), либо за счет сил трения между фланцами при установке болтов с зазором (исполнение II).

Твердость рабочей поверхности зубьев не ниже 45 НКС. Отверстия втулок могут быть расточены под цилиндрический или конический конец вала. Зубчатые муфты обеспечивают значительную компенсацию смещения валов (радиального, углового или комбинированного), при этом перекос оси каждой втулки относительно оси обоймы допускается до 30.

При несоосности валов происходит взаимное скольжение профилей зубьев, вызывающее их износ. Неравномерность распределения нагрузки между зубьями и по их длине создают дополнительные нагрузки на валы в пределах (0,2...0,4), окружная сила на делительном диаметре зубчатого венца втулки. Для уменьшения износа во внутреннюю полость муфты заливают жидкую смазку повышенной вязкости с противозадирными присадками. Для устранения утечек смазки предусматриваются манжетные уплотнения между обоймами и втулками, а также уплотнение шпоночного паза.

13 Червячные передачи. Геометрические параметры и соотношения.

Червячная передача механизм для передачи вращения между валами посредством винта и сопряженного с ним червячного колеса

Геометрические оси валов при этом скрещиваются под углом 90°. Ведущим элементом здесь обычно является червяк (как правило, это винт с трапецеидальной резьбой), ведомым — червячное колесо с зубьями особой формы, получаемыми в результате взаимного огибания с витками червяка. При вращении червяка вокруг своей оси его витки перемещаются вдоль образующей своей цилиндрической поверхности и приводит во вращательное движение червячное колесо. Для увеличения длины контактных линий в зацеплении с червяком зубья червячного колеса имеют дугообразную форму.

Червячные передачи относят к передачам зацеплением. Червячная передача — это зубчато-винтовая передача, движение в которой осуществляют по принципу винтовой пары, которой, как известно, присуще повышенное скольжение.

Различают два вида червячных передач: цилиндрические (с цилиндрическими червяками, см. рис. 1, а, в); глобоидные (с глобоидньши червяками, см. рис.1, б).

Червячную передачу, у червяка и колеса которой делительные и начальные поверхности цилиндрические, называют цилиндрической червячной передачей.

В зависимости от направления линии витка червяка червячные передачи бывают с правым (предпочтительнее для применения) и левым направлением линии витка.

В зависимости от расположения червяка относительно колеса передачи бывают с нижним, верхним и боковым червяками. Расположение червяка определяет общая компоновка изделия и принятый способ смазывания зацепления. При картерном способе смазывания и окружной скорости червяка v1 < 5 м/с обычно применяют нижнее расположение червяка. При больших скоростях во избежание повышенных потерь на перемешивание и разбрызгивание масла применяют верхнее расположение червяка.

В зависимости от формы профиля витка различают:

- архимедов червяк (ZA) (рис. 2, а) — цилиндрический червяк, торцовый профиль витка которого является архимедовой спиралью. Этот червяк подобен винту с трапецеидальной резьбой;

- эвольвентный червяк (ZI) (рис. 2, 6); имеет эвольвентный профиль витка в его торцовом сечении (как у косозубого колеса);

 

- конволютный червяк (ZN); торцовый профиль витка является удлиненной или укороченной эвольвентой. В конволютном червяке режущий инструмент (или наждачный круг) установлен вдоль оси спирали зуба; это удобно при массовом производстве червяков, так как позволяет производить одновременную шлифовку двух сторон профиля зубьев.

В машиностроении из цилиндрических червяков наиболее распространены архимедовы червяки. Их можно нарезать на обычных токарных или резьбофрезерных станках. Однако шлифование его витков затруднено, что снижает точность изготовления и нагрузочную способность червячной передачи. Эвольвентные червяки можно шлифовать, что повышает точность изготовления, обеспечивает более полный контакт витков червяка с зубьями колеса, более высокую нагрузочную способность передачи. Но для изготовления эвольвентных червяков требуются специальные шлифовальные станки. Эвольвентные червяки применяются сравнительно редко. Конволютные червяки шлифуют плоским торцом шлифовального круга на обычных резьбошлифовальных станках. Глобоидные червяки появились сравнительно недавно и вследствие повышенной нагрузочной способности получают все большее распространение, но в изготовлении и монтаже значительно сложнее и сильно нагреваются. Поэтому по-прежнему преимущественное распространение имеют цилиндрические червяки с прямолинейным профилем в осевом сечении.

Зубья на червячном колесе чаще всего нарезают червячной фрезой, которая представляет собой копию червяка, с которым будет зацепляться червячное колесо. При нарезании заготовка колеса и фреза совершают такое же взаимное движение, какое имеют червяк и червячное колесо при работе

Геометрические параметры червяка и червячного колеса (см. рис.5) некорригированной червячной передачи.

Высота витка ; высота зуба червячного колеса ; высота головки винта ; высота головки зуба ; высота ножки витка ; высота ножки зуба колеса ; расчетная толщина витка ; радиальный зазор .

Делительные диаметры:

червяка ;

червячного колеса

Диаметры вершин:

витков червяка ;

зубьев червячного колеса .

Диаметры впадин:

червяка ;

червячного колеса .

Межосевое расстояние .

Условный угол обхвата червяка венцом 25 (см. рис. 5) определяется точками пересечения дуги окружности диаметром с контуром венца;

14 Червячные передачи. Кинематические и силовые соотношения

. Основные кинематические и силовые соотношения в передачах

регулировать угловые скорости рабочего органа машины;

г) реверсировать движение (прямой и обратный ход);

д) распределять работу двигателя между несколькими исполнительными органами машины.

В настоящем курсе рассматриваются только наиболее распространенные из механических передач.

Классификация передач. В зависимости от принципа действия все механические передачи делятся на две группы:

1) передачи зацеплением — зубчатые, червячные, цепные;

2) передачи трением — фрикционные и ременные.

Все передачи трением имеют повышенную изнашиваемость

рабочих поверхностей, так как в них неизбежно проскальзывание одного звена относительно другого.

В зависимости от способа соединения ведущего и ведомого звеньев бывают:

а) передачи непосредственного контак¬та — фрикционные, зубчатые, червячные;

б) передачи гибкой связью — ременные, цепные. Передачи гибкой связью допускают значительные расстояния между ведущим и ведомым валами.

Накопленный опыт проектирования, изготовления и эксплуатации различных передач определил область и границы их применения (см. ниже).

§ 6.2. Основные кинематические и силовые соотношения в передачах

Особенности каждой передачи и ее применение определяются следующими основными характеристиками:

1) мощностью на ведущем Р\ и ведомом Р2 валах или враща¬ющими моментами Τ ι и Т2 на тех же валах;

2) угловой скоростью ведущего ωι и ведомого ω2 валов (рис. 6.1, а, б).

Это две основные характеристики, необходимые для выполне¬ния проектного расчета любой передачи.

Дополнительными характеристиками являются:

а) механический к.п.д. передачи

 

 

Для многоступенчатой передачи, состоящей из нескольких отдельных последовательно соединенных передач, общий к.п.д.

 

 

где т)1, ц2,..., ηΛ — к.п.д. каждой кинематической пары (зубчатой, червячной, ременной и других передач, подшипников, муфт).

Технико-экономические расчеты тесно связаны с к.п.д. Поте¬ря мощности — показатель непроизводительных затрат энергии — косвенно характеризует износ деталей передачи, так как потерянная в передаче мощность превращается в теплоту и час¬тично идет на разрушение рабочих поверхностей.

  1.  15 Червячные передачи. Материалы. Виды повреждений.
  2.  Материалы червячной передачи.
  3.  Материалы в червячной передаче должны иметь в сочетании низкий коэффициент трения, обладать повышенной износостойкостью и пониженной склонностью к заеданию. Обычно это разнородные материалы.
  4.  Червяки изготовляют в основном из сталей марок 40, 45, 50 (реже из сталей 35, Ст5) с закалкой до HRC 45-55; 15Х, 20Х, 40Х, 40ХН, 12ХНЗ, 18ХГТ с цементацией и закалкой до HRC 58—63.
  5.  Червячные колеса (или их венцы) изготовляют только из антифрикционных сплавов.
  6.  При скоростях скольжения до 2 м/с и больших диаметрах колес для их изготовления можно использовать чугуны марок СЧ15, СЧ20, СЧ25; до 6 м/с — применяют алюминиево-железистые бронзы БрА9Ж4 (при этом червяк должен иметь твердость не менее HRC 45), до 25 м/с и длительной работе без перерыва применяют оловяниетую бронзу БрОЮФ, оловянно-никелевую бронзу БрОНФ.
  7.  Для получения высоких качественных показателей передачи применяют закалку до твердости  HRCЭ, шлифование и полирование витков червяка. В старых редукторах нашли применение эвольвентныечервяки типа ZI, а перспективными являются нелинейчатые: образованные конусом типа ZK или тором типа ZT (по изобретению проф. Г. Ниманна). Рабочие поверхности витков нелинейчатых червяков шлифуют с высокой точностью конусным или тороидным кругом. Передачи с нелинейчатыми червяками характиризует повышенная нагрузочная способность.
  8.  Термообработку – улучшение применяют для передачи малой мощности до 1,1 кВт.
  9.  Таким образом, для силовых передач следует применять эвольвентные нелинейчатые червяки.
  10.  Зубчатые венцы червячных колес изготовляют преимущественно из бронзы, реже из латуни или чугуна, причем выбор марки материала зависит от скорости скольжения .
  11.  Материалы венцов червячных колес по мере убывания антизадирных и антифрикционных свойств и рекомендуемым для применения скоростям скольжения можно условно свести к трем группам.
  12.  Группа I. Оловянные бронзы (марок БрО10Ф1, БрО10Н1Ф1 и др.), применяют при высоких скоростях скольжения (= 5...25 м/с). Обладают хорошими антизадирными свойствами, но имеют невысокую прочность.
  13.  Группа II. Безоловянные бронзы и латуни применяют при средних скоростях скольжения ( до 3...5 м/с). Чаще других применяют алюминиевую бронзу марки БрА9ЖЗЛ. Эта бронза имеет высокую механическую прочность, но обладает пониженными антизадирными свойствами, поэтому ее применяют в паре с закаленными (Н > 45 HRCэ) шлифованными и полированными червяками.
  14.  Группа Ш. Серые чугуны марок СЧ15, СЧ20 применяют при малых скоростях скольжения (< 2...3 м/с).
  15.  Виды разрушений зубьев:
  16.  - заедание; особо опасно при колесах из твердых безоловянистых бронз и чугуна. Слабой формой заедания является намазывание витков червяка бронзой (сечение зуба постепенно уменьшается, но передача продолжает работать еще длительное время), а опасной формой – задир контактирующихся поверхностей в виде борозд параллельно скорости скольжения с последующим катастрофическим изнашиванием и повреждением зубьев колеса частицами, приварившимися к виткам червяка. Этот вид разрушения зубьев встречается наиболее часто в передачах с колесами из безоловянных бронз (алюминиевых) и серых чугунов. Для предупреждения заедания рекомендуют тщательно обрабатывать поверхности витков и зубьев, применять материалы с высокими антифрикционными свойствами, применять масла с противоизносными и противозадирными присадками (И-Г-С-220, И-Т-С-320, И-Т-Д-100).
  17.  - усталостное выкрашивание; в передачах с колесами из оловянных бронз (мягкие материалы) наиболее опасно усталостное выкрашивание рабочих поверхностей зубьев колеса.
  18.  - изнашивание зубьев; происходит по той же причине, что и заедание, а также при ухудшении условий смазывания (загрязнении смазочного материала), точности монтажа, длительной работе с частыми пусками и остановками передачи, а также от значений контактных напряжений;
  19.  - изломы зубьев колеса; наблюдаются после их изнашивания, чаще при наличии динамических нагрузок.

16 Червячные передачи. Расчеты на прочность.

К эксплутационным требованиям червячной пары можно отнести: показатели надёжности, износостойкости, сопротивление усталости, контактную жёсткость, виброустойчивость, коррозионную стойкость и прочность сцепления покрытий. Например, хромирование витков червяка существенно повышает стойкость к заеданию и износу червячной пары. В этих кинематических парах отношение скорости скольжения к суммарной скорости больше единицы, поэтому наилучшие результаты достигаются сочетанием высокотвёрдой поверхности витка с антифрикционным венцом колеса. Обеспечение этих свойств и качеств технологическими методами связано с показателями геометрического и физико-термического характера. Качество деталей по прочности размеров, шероховатость и микронеровность соприкасающихся поверхностей влияют на износостойкость. Например, важно среднее арифметическое отклонение профиля, средний шаг неровностей профиля по средней линии, относительная опорная длина профиля. Поверхностный слой любой детали отличается от основного материала и представляет собой своеобразный композит. Поверхностной твёрдости добиваются созданием защитных оксидных плёнок, легированием, ионной имплантацией.

Одной из причин повышенного изнашивания зубьев червячного колеса (и заедания) является скольжение витков червяка по зубьям червячного колеса при отсутствии разделяющей их масляной пленки. Скорость скольжения  направлена по касательной к винтовой линии делительного диаметра червяка  и определяется из параллелограмма скоростей (см. рис. 7):

  1.  
  2.  где и окружные скорости червяка и колеса, м/с; , мм; - угловая скорость червяка, рад/с.

17 Червячные передачи. Тепловой расчёт

Тепловой расчет червячной передачи

В червячной передаче имеют место сравнительно большие потери передаваемой мощности на трение, передача работает с большим тепловыделением.

Если отвод тепла будет недостаточен, передача перегреется. Так как смазочные свойства масла при нагреве резко ухудшаются, то возникает опасность заедания передачи и выхода ее из строя. При установившемся режиме работы червячного редуктора количество тепла, выделяемого в нем, равно количеству отводимого от него тепла. Этот тепловой баланс устанавливается при определенном перепаде температур между находящимся в редукторе маслом и окружающим корпус воздухом. Тепловой режим работы редуктора нормальный, если перепад температур находится в допустимых пределах. Для обеспечения нормальной работоспособности для червячных редукторов (закрытой передачи) производят тепловой расчет. Тепловой расчет червячной передачи при установившемся режиме работы производят на основе теплового баланса, т. е. приравнивания тепловыделения теплоотводу.

Условие нормального теплового режима:

 (13)

где  температура масла в корпусе редуктора; — допускаемая температура масла в корпусе редуктора. Допускаемое значение  зависит от сорта масла, его способности сохранять смазывающие свойства при повышении температуры. Для обычных редукторных масел допускают t1= 60...70°С, в исключительных случаях = 90 °С; - определяют из условия теплового баланса, а именно: выделяемое червячной парой тепло должно полностью отводиться в окружающую среду

— количество теплоты, выделяемое передачей при непрерывной работе; — количество теплоты, отводимое свободной поверхностью корпуса передачи за то же время.

Количество теплоты, выделяющейся в передаче в секунду, или тепловая мощность

  

где P1 – мощность на входном валу передаваемая червяком, Вт;   КПД передачи

Количество тепла, отводимое через поверхность охлаждения корпуса редуктора,

 

где А – площадь поверхности корпуса передачи, соприкасающаяся с воздухом, м2. В площадь поверхности охлаждения А входит площадь наружной поверхности корпуса редуктора без днища. Если корпус снабжен охлаждающими ребрами, то учитывают только 50% площади их поверхности.; внутренняя температура редуктора или температура масла, °С;   температура окружающей среды (воздуха), °С (при проектировании обычно принимают = 20°С);   коэффициент теплопередачи — количество теплоты, передаваемое в окружающую среду с единицы поверхности в 1 с при разности. температур в 1°С, Вт/(м2 °С). При нормальной циркуляции воздуха вокруг корпуса = (14-17,5) Вт/(м2 0С), при плохой – = (8-10,5) Вт/(м2 °С).

Итак, на основании теплового баланса можно определить температуру масла

 (14)

Тепловой расчет червячной передачи выполняют как проверочный.

При необходимо предпринять меры от перегрева.

Способы предотвращения перегрева

1. изменение корпуса (ребра жесткости, которые выбирают из условия лучшего обтекания воздухом). При естественном охлаждении в соответствии с тем, что нагретый воздух идет вверх, ребра располагают вертикально;

2. установка вентилятора на валу червяка (ребра располагают вдоль направления потока);

3. установка масляного радиатора;

4. установка в масляную ванну змеевика, по которому пропускают проточную воду.

Глубина погружения колес в масло не должна превышать высоты зуба или витка червяка для быстроходных колес и 1/3 радиуса тихоходных колес. Рекомендуемое количество масла, заливаемого в корпус, 0,5...0,7 л на 1 кВт передаваемой мощности. Сорт масла выбирают по справочникам в зависимости от окружной скорости и нагруженности передачи.

 

  1.  18 Цепные передачи. Принцип работы, устройство. Классификация. Достоинства и недостатки. Типы приводных цепей.

Цепная передача — это передача механической энергии при помощи гибкого элемента — цепи, за счёт сил зацепления. Может иметь как постоянное так и переменное передаточное число (напр. цепной вариатор).

Состоит из ведущей и ведомой звездочки и цепи. Цепь состоит из подвижных звеньев.

Ц. п. универсальны, просты и экономичны. По сравнению с зубчатыми передачами (См. Зубчатая передача) они менее чувствительны к неточностям расположения валов, ударным нагрузкам, допускают практически неограниченные межцентровые расстояния, обеспечивают более простую компоновку, большую подвижность валов друг относительно друга. В сравнении с ремёнными передачами (См. Ремённая передача) они характеризуются следующими достоинствами: отсутствие проскальзывания и постоянство среднего передаточного отношения; отсутствие предварительного натяжения и связанных с ним дополнительных нагрузок на валы и подшипники; передача большой мощности как при высоких, так и при низких скоростях; сохранение удовлетворительной работоспособности при высоких и низких температурах; приспособление к любым изменениям конструкции удалением или добавлением звеньев.

Достоинства:

  1.  большая прочность стальной цепи по сравнению с ремнем позволяет передать цепью большие нагрузки с постоянным передаточным числом и при значительно меньшем межосевом расстоянии (передача более компактна);
  2.  возможность передачи движения одной цепью нескольким звездочкам;
  3.  по сравнению с зубчатыми передачами — возможность передачи вращательного движения на большие расстояния (до 7 м);
  4.  сравнительно высокий КПД (>> 0,9 ÷ 0,98);
  5.  отсутствие скольжения;
  6.  малые силы, действующие на валы, так как нет необходимости в большом начальном натяжении;
  7.  возможность легкой замены цепи.

Недостатки:

  1.  растяжение цепи со временем;
  2.  сравнительно высокая стоимость цепей;
  3.  невозможность использования передачи при реверсировании без остановки;
  4.  передачи требуют установки на картерах;
  5.  сложность подвода смазочного материала к шарнирам цепи;
  6.  скорость движения цепи, особенно при малых числах зубьев звездочек, не постоянна, что вызывает колебания передаточного отношения.

Классификация цепей

  1.  По назначению:
  2.  приводные цепи
  3.  тяговые цепи
  4.  грузовые цепи.

В некоторых механизмах грузоподъёмные цепи, например цепная таль с ручным приводом, выполняют роль приводных цепей

  1.  Ц. п. применяются в с.-х. машинах, велосипедах, мотоциклах, автомобилях, строительно-дорожных машинах, в нефтяном оборудовании и т. д. Преимущественное распространение имеют открытые Ц. п., работающие без смазки, или с периодической ручной смазкой, с однорядными втулочно-роликовыми цепями, непосредственно встроенные в машины.
  2.  
  3.  19 Цепные передачи. Основные параметры цепных передач.

Основные геометрические и кинематические соотношения, КПД передачи

Геометрические параметры передачи (см. рис.15).

1. Межосевое расстояние

 ,   (1)

где t — шаг цепи.

Шаг цепи является основным параметром цепной передачи и принимается по ГОСТу. Чем больше шаг, тем выше нагрузочная способность цепи, но сильнее удар звена о зуб в период набегания на звездочку, меньше плавность, бесшумность и долговечность передачи.

При больших скоростях выбирают цепи с малым шагом. В быстроходных передачах при больших мощностях рекомендуются также цепи малого шага: зубчатые большой ширины или роликовые многорядные. Максимальное значение шага цепи ограничивается угловой скоростью малой звездочки.

Минимальное межосевое расстояние (мм) выбирают из условия минимально допустимого зазора между звездочками:

 ,  (2)

где ,  — диаметры вершин зубьев ведущей и ведомой звездочек.

Максимальное межосевое расстояние = 80Л

20 Цепные передачи. Силы в цепной передаче.

Силы в цепной передаче

При увеличении γ уменьшается износ зубьев и шарниров, связанный с перемеще¬ниями шарниров по профилю зуба в процессе зацепления (см. ниже). С другой стороны, увеличение γ приводит к усиле¬нию удара шарниров при входе в зацепление, а также к увеличению натяжения холостой ветви цепи. Более благо¬приятным в этом отношении является также вогнутый профиль.

Материалы цепей и звездочек. Цепи и звездочки должны быть стойкими против износа и ударных нагрузок. По этим соображениям большинство цепей и звездочек изготовляют из углеродистых и легированных сталей с последующей термической обработкой (улучшение, закалка). Рекомендации по выбору материалов и термообработки цепей и звездочек можно найти в соответствующих справочниках [4, 27]. Так, например, для звездочек рекомендуется применять стали 45, 40Х и др.; для пластин цепей — стали 45, 50 и др.; для валиков вкладышей и роликов — стали 15, 20, 20Х и др. Детали шарниров цепей в большинстве случаев цементируют, что повышает их износо¬стойкость при сохранении ударной прочности. Перспективным является изготовление звездочек из пластмасс, позволяющих уменьшить динамические нагрузки и шум передачи.

§ 13.4. Силы в цепной передаче

Силовая схема цепной передачи аналогична силовой схеме ременной передачи. Здесь также можно различить: Fx и F2 — натяжения ведущей и ведомой ветвей цепи; Ft — окружную силу; F0 — силу предварительного натяжения; Fv — натяжения от центробежных сил. По той же аналогии,

где q— масса единицы длины цепи (по каталогу); ν — окружная скорость.

Для цепной передачи значение F0 принято определять как натяжение от силы тяжести свободной ветви цепи:

 

 

где а — длина свободной ветви цепи, приближенно равная межосевому расстоянию; g—ускорение силы тяжести; Kf — коэффициент провисания, зависящий от расположения привода и стрелы провисания цепи /.

Для рекомендуемых значений /¾ (0,01...0,02) а приближенно принимают: при

горизонтальном расположении Kf = 6; под углом 40" к горизонту Kf = 3, при вертикальном расположении Kf= 1. Значение Kf уменьшается с увеличением /.

Натяжение ведомой ветви F2 равно большему из натяжений F0 и Fv.

Для цепной передачи, работающей по принципу зацепления, а не трения, значение F0 не имеет такого решающего влияния, как для ременной передачи. Обычно F0 составляет всего несколько процентов от Ft.

21 Цепные передачи. Критерий работоспособности и расчёт цепных передач. Достоинства и недостатки.

РАСЧЕТ ЦЕПНЫХ ПЕРЕДАЧ

В соответствии с основным критерием работоспособности ценных передач износостоикостью шарниров цени несущая способность цепных передач может быть определена согласно условию, но которому давление в шарнирах не должно превышать допустимого в данных условиях эксплуатации

В расчетах ценных передач, в частности в учете условий эксплуатации, связанных с величиной пути трения, удобно использовать простейшую степенную зависимость между давлением р и путем трения Pm=С , где С в данных ограниченных условиях может рассматриваться как постоянная величина. Показатель т зависит от характера трения; при нормальной эксплуатации передач с хорошей смазкой т около 3 (в условиях скудной смазки т колеблется от 1 до 2)

Допустимая полезная сила, которую может передавать цепь с шарниром скольжения,

F=[p]oA/Kэ;

здесь [р]о— допустимое давление, МПа, в шарнирах для средних эксплуатационных условий; A - проекция опорной поверхности шарнира, мм 2 , равная для роликовых и втулочных ценей dBвн|, (d — диаметр валика; Bвн - ширина внутреннего звена ); Kэ - коэффициент эксплуатации

Коэффициент эксплуатации Кэ, может быть представлен в виде произведения частных коэффициентов:

Кэ=KдKаKнKрегKсмKрежKт

Коэффициент Kд учитывает динамичность нагрузки; при спокойной нагрузке Kд=1; при нагрузке с толчками 1,2. ..1,5; при сильных ударах 1,8. Коэффициент Kа учитывает длину цепи (межосевое расстояние); очевидно, что чем длиннее цепь, тем реже при прочих равных условиях каждое звено входит в зацепление со звездочкой и тем меньше износ в шарнирах; при а=(30...50)P принимают Kа=1; при а<25Р Ка=-1,25, при a=(60... 80) Р Kа=0,9. Коэффициент Kн учитывает наклон передачи к горизонту; чем больше наклон передачи к горизонту, тем меньше допустимый суммарный износ цепи; при наклоне линии центров звездочек под углом к горизонту до 45° Кн= 1; при наклоне под углом y более 45° Kн=0,15 Ц y . Коэффициент Крег учитывает регулировку передачи; для передач с регулировкой положения оси одной из звездочек Kрег=1; для передач с оттяжными звездочками или нажимными роликами Kрег=1,1; для передач с нерегулируемыми осями звездочек Крег=1,25. Коэффициент Kcм учитывает характер смазывания; при непрерывном смазывании в масляной панне или от насоса Kсм=0,8, при регулярном капельном или внутришарнирном смазывании Kсм=1, при периодическом смазывании 1,5. Коэффициент Kреж . учитывает режим работы передачи; при односменной работе Kреж=1. Коэффициент Kт учитывает температуру окружающей среды, при –25°<T<150°С принимают Kт=1; при экстремальных условиях Кт>1

При оценке значения коэффициента эксплуатации Кэ необходимо хотя бы ориентировочно учитывать стохастический (случайный) характер ряда влияющих на него параметров

Если по расчету значение коэффициента Kэ>2...3, то нужно принять конструктивные меры по улучшению работы передачи

Приводные цепи проектируют на основе геометрического подобия, поэтому площадь проекции опорной поверхности шарнира для каждого размерного ряда цепей можно представить в виде А = сР 2 , где с — коэффициент пропорциональности, с » 0,25 для однорядных цепей, кроме цепей, не входящих в закономерный размерный ряд: ПР-8-460; ПР-12,7-400-1 и ПР. 12,7-900-2

Допустимая сила F цепи с mp рядами

F= сР 2 [p]o mp/Kэ,

где тр — коэффициент рядности цепи, учитывающий неравномерность распределения нагрузки по рядам:

zp=1 . . . . 2 3

тp,=1 .... 1,7 2,5

Допустимый момент (Н*м) на малой звездочке

T1=Fd1/2*10 3 =FPz1/2 p 10 3

Отсюда шаг цепи

Р=18,5 3 Ц T1Кэ/(cz1mp[p]o)

Ориентировочное значение шага однорядной цепи (мм)

P=(12,8…13,5) 3 Ц T1/z1

 

Достоинства:

  1.  большая прочность стальной цепи по сравнению с ремнем позволяет передать цепью большие нагрузки с постоянным передаточным числом и при значительно меньшем межосевом расстоянии (передача более компактна);
  2.  возможность передачи движения одной цепью нескольким звездочкам;
  3.  по сравнению с зубчатыми передачами — возможность передачи вращательного движения на большие расстояния (до 7 м);
  4.  сравнительно высокий КПД (>> 0,9 ÷ 0,98);
  5.  отсутствие скольжения;
  6.  малые силы, действующие на валы, так как нет необходимости в большом начальном натяжении;
  7.  возможность легкой замены цепи.

Недостатки:

  1.  растяжение цепи со временем;
  2.  сравнительно высокая стоимость цепей;
  3.  невозможность использования передачи при реверсировании без остановки;
  4.  передачи требуют установки на картерах;
  5.  сложность подвода смазочного материала к шарнирам цепи;
  6.  скорость движения цепи, особенно при малых числах зубьев звездочек, не постоянна, что вызывает колебания передаточного отношения.

22 Фрикционные передачи. Принцип работы, устройство. Классификация.

Фрикционная передача — механическая передача, служащая для передачи вращательного движения (или для преобразования вращательного движения в поступательное) между валами с помощью сил трения,возникающих между катками, цилиндрами или конусами, насаженными на валы и прижимаемыми один к другому.

Фрикционные передачи состоят из двух катков (рис.1): ведущего 1 и ведомого 2, которые прижимаются один к другому силой Fr (на рисунке — пружиной), так что сила трения в месте контакта катков достаточна для передаваемой окружной силы Ft.

Условие работоспособности передачи:

    (1)

Нарушение условия (1) приводит к буксованию и быстрому износу катков. Для того чтобы передать заданное окружное усилие Ft., фрикционные катки надо прижать друг к другу усилием Fr так, чтобы возникающая при этом сила трения была бы больше силы Ft. на величину коэффициента запаса сцепления , который принимают равным = 1,25...2,0.

Значения коэффициента трения между катками в среднем:

- сталь или чугун по коже или ферродо насухо f = 0,3;

- то же в масле f = 0,1;

- сталь или чугун по стали или чугуну насухо f = 0,15;

- то же в масле f = 0,07.

Подставив эти значения в уравнение, можно убедиться в том, что усилие прижатия фрикционных катков во много раз превышает передаваемое окружное усилие.

 

Фрикционные передачи классифицируют по следующим признакам:

1. По назначению:

- с нерегулируемым передаточным числом (рис.1-3);

- с бесступенчатым (плавным) регулированием передаточного числа (вариаторы).

2. По взаимному расположению осей валов:

- цилиндрические или конусные с параллельными осями (рис.1, 2);

- конические с пересекающимися осями (рис.3).

3. В зависимости от условий работы:

- открытые (работают всухую);

- закрытые (работают в масляной ванне).

В открытых фрикционных передачах коэффициент трения выше, прижимное усилие катков Fn меньше. В закрытых фрикционных передачах масляная ванна обеспечивает хороший отвод тепла, делает скольжение менее опасным, увеличивает долговечность передачи.

4. По принципу действия:

- нереверсивные (рис.1-3, 11 и 12);

- реверсивные (рис.10).

5. Различают также передачи с постоянным или автоматическим регулируемым прижатием катков, с промежуточным (паразитным) фрикционным элементом или без него.

 

23 Основные характеристики фрикционных передач. Виды разрушении катков

Фрикционная передача — механическая передача, служащая для передачи вращательного движения (или для преобразования вращательного движения в поступательное) между валами с помощью сил трения, возникающих между катками, цилиндрами или конусами, насаженными на валы и прижимаемыми один к другому.

Фрикционные передачи состоят из двух катков (рис.9.1): ведущего 1 и ведомого 2, которые прижимаются один к другому силой (на рисунке — пружиной), так что сила трения в месте контакта катков достаточна для передаваемой окружной силы .

Применение.

Фрикционные передачи с нерегулируемым передаточным числом в машиностроении применяются сравнительно редко, например, во фрикционных прессах, молотах, лебедках, буровой технике и т.п.). В качестве силовых передач они громоздки и малонадежны. Эти передачи применяются преимущественно в приборах, где требуется плавность и бесшумность работы (магнитофоны, проигрыватели, спидометры и т. п.). Они уступают зубчатым передачам в несущей способности. Зато фрикционные передачи с бесступенчатым регулированием скорости – вариаторы – широко применяются в различных машинах, например, в металлорежущих станках, в текстильных и транспортирующих машинах и т. д. Зубчатые передачи не позволяют такого регулирования. На практике широко применяют реверсивные фрикционные передачи винтовых прессов, передачи колесо — рельс и колесо — дорожное полотно самоходного транспорта. Фрикционные передачи предназначены для мощностей, не превышающих 20 кВт, окружная скорость катков допускается до 25 м/с.

 

Основные виды повреждений рабочих поверхностей катков и критерии расчета.

Усталостное выкрашивание (питтинг). Встречается в закрытых передачах, работающих при обильной смазке и защищенных от попадания абразивных частиц. Сила прижатия катков  необходимая для обеспечения работоспособного состояния фрикционной передачи, на опорной поверхности катков вызывает значительные контактные напряжения . Эти напряжения (рис. 2.7, а) носят циклический характер, так как приобкатывании точки обода катка проходят неподвижную точку контакта. Циклическое действие контактных напряжений способствует развитию усталостных микротрещин на рабочих поверхностях катков. На рабочей поверхности катка появляются мелкие раковины. В закрытых передачах, работающих при обилии смазочного материала, микротрещины расклиниваются смазочным материалом, и от рабочей поверхности катка выкрашиваются частицы металла (рис.6, 6). Такой вид разрушения катка называют усталостным выкрашиванием. Поэтому проектный расчет фрикционных передач выполняют на контактную прочность. При этом повышение твердости поверхностного слоя катков обеспечивает более высокие допускаемые контактные напряжения. Условие для предотвращения усталостного выкрашивания (или условие прочности):

 

Изнашивание. Этот вид повреждения рабочих поверхностей катков чаще наблюдается в открытых передачах, так как именно в эти передачи в процессе работы больше всего попадает абразивных материалов, что, в свою очередь, увеличивает их изнашивание. Наблюдается также изнашивание катков при буксовании и вследствие упругого скольжения, как в открытых, так и в закрытых передачах. Для обеспечения износостойкости фрикционные передачи рассчитывают на контактную прочность (для стальных или чугунных катков) или по условию ограничения нагрузки q на единицу длины контактной линии (для катков из фибры, резины и других материалов).

Задир возникает в быстроходных сильно нагруженных передачах при разрыве масляной пленки на рабочей поверхности катков. В месте касания катков повышается температура, масляный слой разрывается, и катки непосредственно соприкасаются друг с другом. В результате происходит приваривание частиц металла с последующим отрывом от одной из поверхностей катков. Приварившиеся частицы задирают рабочие поверхности в направлении скольжения. Для предупреждения задира применяют противозадирные масла.

 Скольжение является причиной износа, уменьшения КПД и непостоянства передаточного отношения во фрикционных передачах. Различают три вида скольжения: буксование, упругое скольжение, геометрическое скольжение.

 Буксование наступает при перегрузках, когда не соблюдается условие (1). При буксовании ведомый каток останавливается, а ведущий скользит по нему, вызывая местный износ или задир поверхности.

Нарушение геометрической формы и качества поверхности катков выводит передачу из строя. Поэтому при проектировании следует принимать достаточный запас сцепления К и не допускать использования фрикционной передачи в качестве предохранительного устройства от перегрузки.

Упругое скольжение связано с упругими деформациями в зоне контакта. Величина этого скольжения невелика и обычно не превышает 0,2% для стальных катков и 1% для текстолита по стали. Это можно объяснить на примере цилиндрической передачи. Если бы катки были абсолютно жесткими, то первоначальный контакт по линии оставался бы таким и под нагрузкой. При этом окружные скорости по линии контакта равны и скольжения не происходит. При упругих телах первоначальный контакт по линии переходит под нагрузкой в контакт по некоторой площадке. Равенство окружных скоростей соблюдается только в точках, расположенных на одной из линий этой площадки. Во всех других точках происходит скольжение.

 Геометрическое скольжение. Помимо упругого скольжения катков, которое возникает так же, как и в ременных передачах, во фрикционных передачах может иметь место еще геометрическое скольжение вследствие разности скоростей ведущего и ведомого катков по длине контакта b. Геометрическое скольжение не позволяет катки делать широкими, вследствие чего в передаче возникают большие контактные напряжения, ограничивающие передаваемую мощность. Геометрическое скольжение является основной причиной износа рабочих поверхностей фрикционных передач.

Широкое применение нашли фрикционные вариаторы, работающие в масле. Хотя при этом коэффициент трения ниже и сила прижатия больше, однако скольжение в этом случае менее опасно: наличие масла уменьшает износ, способствует лучшему охлаждению катков, приближая условия работы катков к работе зубьев зубчатой закрытой передачи.

24 Ременные передачи. Классификация. Достоинства и недостатки

Ременная передача относится к передачам трением с гибкой связью и может применяться для передачи движения между валами, находящимися на значительном расстоянии один от другого. Она состоит (рис.1) из двух шкивов (ведущего, ведомого) и охватывающего их ремня. Ведущий шкив силами трения, возникающими на поверхности контакта шкива с ремнем вследствие его натяжения, приводит ремень в движение. Ремень в свою очередь заставляет вращаться ведомый шкив. Таким образом, мощность передается с ведущего шкива на ведомый.

Классификация. Ременные передачи классифицируют по следующим признакам.

1. По форме сечения ремня:

- плоскоременные (рис.3, а);

 - клиноременные (рис.3, б);

- круглоременные (рис.3, в);

- с зубчатыми ремнями (рис.3, д);

- с поликлиновыми ремнями (рис.3, г).

2. По взаимному расположению осей валов:

- с параллельными осями (см. рис.1, а, б);

- с пересекающимися осями — угловые (см. рис.1, г);

- со скрещивающимися осями (см. рис.1, в).

3. По направлению вращения шкива:

- с одинаковым направлением (открытые и полуоткрытые) (см. рис.1, а);

- с противоположными направлениями (перекрестные) (см. рис.1, б).

4. По способу создания натяжения ремня:

- простые (см. рис.1, а);

- с натяжным роликом (см. рис.1, д);

- с натяжным устройством (см. рис.2).

5. По конструкции шкивов:

- с однорядными шкивами (см. рис.1, а—д);

- со ступенчатыми шкивами (см. рис.1, е).

Достоинства:

- возможность расположения ведущего и ведомого шкивов на больших расстояниях (более 15 метров) (что важно, например, для сельскохозяйственного машиностроения);

- плавность хода, бесшумность работы передачи, обусловленные эластичностью ремня;

- малая чувствительность к толчкам и ударам, а также к перегрузкам, способность пробуксовывать;

- возможность работы с большими угловыми скоростями;

- предохранение механизмов от резких колебаний нагрузки вследствие упругости ремня;

- возможность работы при высоких оборотах;

- простота конструкции и дешевизна.

Недостатки:

- непостоянство передаточного числа вследствие проскальзывания ремней;

- постепенное вытягивание ремней, их недолговечность;

- необходимость постоянного ухода (установка и натяжение ремней, их перешивка и замена при обрыве и т. п.);

- сравнительно большие габаритные размеры передачи;

- высокие нагрузки на валы и опоры из-за натяжения ремня;

- опасность попадания масла на ремень;

- малая долговечность при больших скоростях (в пределах от 1000 до 5000 ч);

- необходимость натяжного устройства.

25 Ременные передачи. Основные геометрические соотношения.

§ 17.2. Основные геометрические соотношения ременных передач

1. Межосевое расстояние а ременной передачи (рис. 17.2) определяется в основном конструкцией привода машины. Рекомендуется:

 

где d\ и d<i — диаметры шкивов; h — высота сечения ремня.

2. Расчетная длина ремня / равна сумме длин прямолинейных участков и дуг обхвата шкивов

При наличии сшивки длину ремня увеличивают на Δ/ = = 100...400 мм.

3. Межосевое расстояние при окончательно установленной длине ремня

21 —π (d2 + dx)+^[2l-n (d2 + dx)f-8 (d2-d{)2

Угол обхвата ремнем малого шкива щ = 180° — 2γ.

Из треугольника Οι В02

sin v = B02/0, 02=(d2-dl)/(2a).

Практически у не превышает π/6, поэтому приближенно принимают sin γ «γ рад, тоV=(d2 —d,)/(2a) рад, или γ°=180° (d2 — dx)/ (π·2α)а, = 180° — 57°

Для плоскоременной передачи рекомендуется [αι]^150°, а для клиноременной и поликлиноременной [αι]>120°.

26 Ременные передачи. Передаточное число. Напряжение в ремне.

Натяжение ремня существенно влияет на долговечность, тяговую способность и к.п.д. передачи. Чем выше предварительное натяжение ремня Fo , тем больше тяговая способность и к.п.д., но меньше долговечность ремня. Натяжение ремня в передачах осуществляется:

Передаточное число () находится как отношение числа зубьев колеса () к числу зубьев шестерни () в зубчатой передаче, числа зубьев червячного колеса к числу заходов червяка в червячной передаче, числа зубьев большой звёздочки к числу зубьев малой в цепной передаче, а также диаметра большого шкива (или катка) к диаметру меньшего в ремённой или фрикционной передаче. Передаточное число используется при расчётах геометрических параметров зубчатых передач.[1] [2]

  1.  27 Ременные передачи. Критерии работоспособности
  2.   
  3.   Основными критериями работоспособности ремённых передач являются
  4.  1) тяговая способность – надёжность сцепления со шкивами,
  5.  2) долговечность ремня, которая определяется в основном его сопротивлением усталости.
  6.  
  7.  Тяговая способность ременной передачи обусловливается сцеплением ремня со шкивами. Исследуя тяговую способность, строят графики-кривые скольжения и к.п.д.; на их базе разработан современный метод расчета ременных передач.
  8.  
  9.  Тяговая способность характеризуется кривыми скольжения и КПД передачи от полезной нагрузки (окружной силы Ft), которую выражают через коэффициент тяги , показывающий, какая часть предварительного натяжения ремня полезно используется для передачи нагрузки. Кривые скольжения для всех типов ремней получают экспериментально По оси абсцисс откладывают нагрузку, выраженную через коэффициент тяги ,а по оси ординат – коэффициент скольжения и к.п.д.. При постоянном натяжении постепенно повышают полезную нагрузку Ft, а следовательно, и коэффициент тяги и измеряют значение коэффициента ,а (точнее, 1 и 2), а также КПД передачи .При возрастании коэффициента тяги от нуля до критического значения наблюдается только упругое скольжение, которое пропорционально нагрузке, и кривая скольжения имеет прямолинейный участок. Передача работает нормально.
  10.  
  11.  При дальнейшем увеличении коэффициента тяги от до к упругому скольжению добавляется частичное буксование. Нормальная работа передачи нарушается. Зона частичного буксования определяет способность передачи переносить кратковременные перегрузки, например при пуске. При предельном значении наступает полное буксование, ведомый шкив останавливается.
  12.  
  13.  В зоне частичного буксования КПД резко снижается вследствие увеличения потерь на скольжение, при этом ремень быстро изнашивается. Поэтому рабочую нагрузку рекомендуется выбирать вблизи критического значения. В этом случае значение КПД принимают: для плоскоремённой передачи = 0,93…0,98; для клино- и поликлиноремённой = 0,92…0,97.
  14.  
  15.  28 Ременные передачи. Устройства для натяжения ремня.
  16.  
  17.   Натяжение ремня существенно влияет на долговечность, тяговую способность и к.п.д. передачи. Чем выше предварительное натяжение ремня Fo , тем больше тяговая способность и к.п.д., но меньше долговечность ремня. Натяжение ремня в передачах осуществляется:
  18.   - Устройствами периодического действия, где ремень натягивается винтами. Ремень периодически подтягивается по мере вытяжки. Требуется систематическое наблюдение за передачей, иначе возможно буксование и быстрый износ ремня.
  19.  - Устройствами постоянного действия, где натяжение создаётся грузом, весом двигателя или пружиной. Часто натяжение происходит за счёт массы двигателя на качающейся плите. К таким устройствам относятся натяжные ролики. Натяжение ремня автоматически поддерживается постоянным. - Устройствами, автоматически регулирующими натяжение в зависимости от нагрузки с использованием сил и моментов, действующих в передаче. Шкив 1 установлен на качающемся рычаге, который также является осью ведомого колеса зубчатой передачи. Натяжение ремня 2Fo равно окружной силе на шестерне и пропорционально передаваемому моменту.
  20.   29 Типы приводных ремней. Шкивы ременных передач.

. Типы ремней ременных передач: а — плоский ремень; б — клиновый ремень;

в — круглый ремень; г — поликлиновый ремень; д — зубчатый ремень

Конструкции шкивов. Шкив (рис.5, а) состоит из обода 1, спин (или диска) 2 и ступицы 3. Плоскоременные шкивы имеют гладкую рабочую поверхность обода и по стандарту выполняются трех исполнений (рис.5, б).

Для предупреждения спадания плоского ремня со шкивов один из них (чаще больший) выполняют с выпуклым ободом, описанным по дуге, или цилиндрическими с двусторонней конусностью (рис.5, б). Стрелу выпуклости обода шкива h принимают в зависимости от диаметра шкива D и ширины ремня b. Ведущий шкив применяют второго исполнения, ведомый — первого и второго. Шероховатость  мкм.

Шкивы обычно изготавливают чугунными литыми, стальными, сварными или сборными, литыми из лёгких сплавов и пластмасс. Диаметры шкивов определяют из расчёта ременной передачи, а потом округляют до ближайшего значения из ряда R40 (ГОСТ 17383-73*). Чугунные шкивы применяют при скоростях до 30÷45 м/с. Шкивы малых диаметров до 350 мм имеют сплошные диски, шкивы больших диаметров – ступицы эллиптического переменного сечения. Стальные сварные шкивы применяют при скоростях 60÷80 м/с. Шкивы из лёгких сплавов перспективны для быстроходных передач до 100 м/с.

 

30Вариаторы.

Вариа́тор — механическая трансмиссия, способная плавно менять передаточное отношение в некотором диапазоне регулирования. Изменение передаточного отношения производится вручную или автоматически.

Вариатор применяется в устройствах (агрегатах), требующих бесступенчато изменять передаточное отношение, таких как автомобили,мотороллеры, снегоходы, квадроциклы, конвейеры, металлорежущие станки, мешалки и др. В стационарных устройствах вместо вариаторов обычно применяется регулируемый электропривод.

Виды механических вариаторов

  1.  Фрикционные вариаторы:
  2.  лобовые;
  3.  конусные;
  4.  шаровые;
  5.  многодисковые;
  6.  торовые;
  7.  волновые;
  8.  клиноременные.
  9.  Вариаторы зацепления:
  10.  цепной вариатор.

высокомоментный вариато

31Валы и оси. Конструкция, материалы, критерии работоспособности.

Валом называют деталь (как правило, гладкой или ступенчатой цилиндрической формы), предназначенную для поддержания установленных на ней шкивов, зубчатых колес, звездочек, катков и т. д., и для передачи вращающего момента.

При работе вал испытывает изгиб и кручение, а в отдельных случаях помимо изгиба и кручения валы могут испытывать деформацию растяжения (сжатия).

Некоторые валы не поддерживают вращающиеся детали и работают только на кручение.

Вал 1 (рис.1) имеет опоры 2, называемые подшипниками. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы именуют шипами 3, а промежуточные — шейками 4.

Осью называют деталь, предназначенную только для поддержания установленных на ней деталей.

В отличие от вала ось не передает вращающего момента и работает только на изгиб. В машинах оси могут быть неподвижными или же могут вращаться вместе с сидящими на них деталями (подвижные оси).

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.

Материалы валов и осей

Основными критериями работоспособности валов и осей являются жесткость, объемная прочность и износостойкость при относительных микроперемещениях, которые вызывают коррозию.

В качестве материала для осей и валов чаще всего применяют углеродистые и легированные стали (прокат, поковка и реже стальные отливки), так как они обладают высокой прочностью, способностью к поверхностному и объемному упрочнению, легко получаются прокаткой цилиндрические заготовки и хорошо обрабатываются на станках, а также высокопрочный модифицированный чугун и сплавы цветных металлов (в приборостроении). Для неответственных малонагруженных конструкций валов и осей применяют углеродистые стали без термической обработки. Ответственные тяжело нагруженные валы изготовляют из легированной стали 40ХНМА, 25ХГТ и др. Без термической обработки применяют стали 35 и 40, Ст5, Стб, 40Х, 40ХН, ЗОХНЗА, с термической обработкой — стали 45, 50 и др.

Шейки валов, работающие на трение в подшипниках скольжения, должны иметь более твердую поверхность (НRС=50-60), что может быть достигнуто применением закалки TBЧ или цементации и закалки.

При небольших диаметрах зубчатых колес вал и шестерню выполняют как одно целое. В этом случае материал для изготовления вала-шестерни выбирают в соответствии с требованиями, предъявляемыми к материалу шестерни.

Механическую обработку валов обычно производят в центрах, для чего заготовки валов снабжают центровыми отверстиями. Канавки, галтели, шпоночные пазы на одном валу желательно иметь одинаковых размеров, чтобы обработать их одним и тем же инструментом.

В автомобильной и тракторной промышленности коленчатые валы двигателей изготавливают из ковкого или высокопрочного чугуна.

 

Критерии работоспособности

В процессе работы валы и оси испытывают постоянные или переменные по величине и направлению нагрузки. Прочность валов и осей определяется величиной и характером напряжений, возникающих в них под действием нагрузок. Постоянные по величине и направлению нагрузки вызывают в неподвижных осях постоянные напряжения, а во вращающихся осях (и валах) — переменные.

Характерной особенностью валов является то, что они работают при циклическом изгибе наиболее опасного симметричного цикла, который возникает вследствие того, что вал, вращаясь, поворачивается к действующим изгибающим нагрузкам то одной, то другой стороной. При разработке конструкции вала должно быть обращено самое пристальное внимание на выбор правильной его формы, чтобы избежать концентрации напряжений в местах переходов, причиной которых могут быть усталостные разрушения. С этой целью следует избегать:

а) резких переходов сечений;

б) канавок и малых радиусов скруглений;

в) некруглых отверстий;

г) грубой обработки поверхности.

Для оценки правильного выбора геометрической формы вала пользуются гидравлической аналогией, которая гласит: "Если контур детали представить как трубу, в которой движется жидкость, то там, где поток турбулентный, возникнет концентрация напряжений".

Причины поломок валов и осей прослеживаются на всех этапах их "жизни".

- На стадии проектирования – неверный выбор формы, неверная оценка концентраторов напряжений.

- На стадии изготовления – надрезы, забоины, вмятины от небрежного обращения.

- На стадии эксплуатации – неверная регулировка подшипниковых узлов.

Для работоспособности вала или оси необходимо обеспечить:

- объёмную прочность (способность сопротивляться Mизг и Мкрут);

- поверхностную прочность (особенно в местах соединения с другими деталями);

- жёсткость на изгиб;

- крутильную жёсткость (особенно для длинных валов).

Все валы в обязательном порядке рассчитывают на объёмную прочность.

Из изложенного выше следует, что в зависимости от характера напряжений, возникающих в валах и осях, возможны два случая расчета их на прочность: на статическую прочность и на усталостную прочность.

Валы и оси в основном испытывают циклически меняющиеся напряжения. Отсюда следует, что основным критерием работоспособности валов и осей является усталостная прочность. Статическое разрушение встречается очень редко. Оно происходит под действием случайных кратковременных перегрузок. Для валов расчет на сопротивление усталости (уточненный расчет) считается основным. Расчет на статическую прочность выполняют как проверочный.

Усталостная прочность (выносливость) валов и осей оценивается коэффициентом запаса прочности.

Неподвижные оси при действии постоянных нагрузок рассчитывают только на статическую прочность.

Подвижные быстроходные оси и валы рассчитывают на выносливость.

Тихоходные валы и оси, нагруженные переменной нагрузкой, рассчитывают на статическую прочность и выносливость.

Основными расчетными силовыми факторами для осей и валов являются изгибающие Мн и крутящие Мк (только для валов) моменты.

Влияние растягивающих и сжимающих сил незначительно, поэтому, как правило, в расчетах не учитывается.

Методом оценки прочности осей и валов является сравнение расчетных напряжений с допускаемыми по следующим условиям прочности:

; ,  (1)

где , — возникающие (расчетные) напряжения изгиба и кручения в опасном сечении вала, оси; и — допускаемые напряжения на изгиб и на кручение.

Спроектированные валы и оси с учетом обеспечения статической или усталостной прочности иногда выходят из строя вследствие недостаточной их жесткости или из-за вибрации. Кроме того, малая жесткость нарушает нормальную работу зубчатых передач и подшипников. Валы и оси дополнительно рассчитывают на жесткость и колебания.

32 Валы и оси. Расчетные схемы.

  1.  При этом методе расчета различие характера циклов изменения нормальных и касательных напряжений и их влияние на прочность не учитывают.
  2.  В зависимости от действия нагрузок возможны два случая приближенного расчета валов на прочность: расчет только на кручение и расчет на совместное действие кручения и изгиба.

Приближенный расчет выполняют как проектировочный, на основе которого ориентировочно устанавливают диаметры характерных сечений вала с последующим уточнением коэффициентов запаса прочности по выносливости (уточненный расчет см. ниже).

  1.  Расчет валов на кручение.
  2.  При этом расчете обычно определяют диаметр выходного конца вала или диаметр вала под подшипником (под опорой), который испытывает только кручение.
  3.  Исходя из условия прочности (1) выполняют проектировочный расчет
  4.     (5)
  5.  и проверочный расчет
  6.     (6)
  7.  где dрасчетный диаметр вала; Мк — крутящий момент в опасном сечении вала; и — расчетное и допускаемое напряжения кручения в опасном сечении вала (для сталей 45 и Ст5 = 25 ÷ 35 МПа).
  8.  Расчет валов на совместное действие кручения и изгиба.
  9.  Участок вала между опорами (под шестерней, колесом и т.п.) рассчитывают на совместное действие кручения и изгиба по эквивалентному моменту Мэкв.
  10.  Эквивалентный момент вычисляют обычно по формуле (при расчете по теории максимальных касательных напряжений):
  11.     (7)
  12.  где Ми и Мк — изгибающий и крутящий моменты.
  13.  По аналогии с рассмотренными выше случаями расчета выполняют:
  14.  проектировочный расчет
  15.     (8)
  16.  и проверочный расчет
  17.     (9)
  18.  где — эквивалентное напряжение для расчетного сечения вала.
  19.  Получив расчетным путем размеры, с учетом технологии изготовления проектируют конструктивную форму вала.
  20.  Приближенный расчет на совместное действие кручения и изгиба для неответственных конструкций валов можно считать основным. Уточненный расчет на выносливость можно не производить, если соблюдается условие
  21.     (9а)
  22.  где — предел выносливости материала при изгибе (симметричный цикл); Kd — масштабный коэффициент; — эффективный коэффициент концентрации напряжений в опасном сечении;  допускаемый коэффициент запаса прочности по выносливости.
  23.  Порядок приближенного (проектировочного) расчета валов на прочность по Мэкв:
  24.  1. По чертежу узла составляют расчетную схему (рис.10, а).
  25.  2. Определяют действующие на вал силы; если они действуют не в одной плоскости, то их необходимо разложить по двум взаимно перпендикулярным плоскостям. При угле между плоскостями менее 30° все силы можно рассматривать как действующие в одной плоскости.
  26.  В схеме (см. рис.10, а) Мк — крутящий момент, возникающий в поперечных сечениях вала; FB и FTсилы, действующие на вал в вертикальной и в горизонтальной плоскостях.

33 Валы и оси. Проектировочные расчеты на прочность и жесткость.

Расчет осей и валов на жесткость

Валы и оси, рассчитанные на статическую или усталостную прочность, не всегда обеспечивают нормальную работу машин. Под действием нагрузок F (рис. 12) валы и оси в процессе работы деформируются и получают линейные прогибы f и угловые перемещения, что, в свою очередь, ухудшает работоспособность отдельных узлов машин. Так, например, значительный прогиб f вала электродвигателя увеличивает зазор между ротором и статором, что отрицательно сказывается на его работе. Угловые перемещения вала или оси ухудшают работу подшипников, точность зацепления передач. От прогиба вала в зубчатом зацеплении возникает концентрация нагрузки по длине зуба. При больших углах поворота в подшипнике может произойти защемление вала. В металлорежущих станках перемещения валов (в особенности шпинделей) снижают точность обработки и качество поверхности деталей. В делительных и отсчетных механизмах упругие перемещения снижают точность измерений и т. д.

Для обеспечения требуемой жесткости вала или оси необходимо произвести расчет на изгибную или крутильную жесткость.

 

Расчет валов и осей на изгибную жесткость.

Параметрами, характеризующими изгибную жесткость валов и осей, являются прогиб вала f и угол наклона, а также угол закручивания

Условие для обеспечения в процессе эксплуатации требуемой жесткости на изгиб:

и   (23)

где f — действительный прогиб вала (оси), определяемый по формуле (сначала определяется максимальный прогиб в плоскости (Y)- fy, затем в плоскости (Z) - fz, после чего эти прогибы векторносуммируются); [f] — допускаемый прогиб (табл. 3); и — действительный и допускаемый углы наклона (табл. 3).

Расчет валов и осей на крутильную жесткость.

Максимальный угол закручивания определяется также по формулам курса "Сопротивление материалов".

 

Допускаемый угол закрутки в градусах на метр длины можно принимать равным:

 

Допускаемые упругие перемещения зависят от конкретных требований к конструкции и определяются в каждом отдельном случае. Так, например, для валов зубчатых цилиндрических передач допустимая стрела прогиба под колесом , где т – модуль зацепления.

Малое значение допускаемых перемещений иногда приводит к тому, что размеры вала определяет не прочность, а жесткость. Тогда нецелесообразно изготовлять вал из дорогих высокопрочных сталей.

Перемещения при изгибе целесообразно определять, используя интеграл Мора или способ Верещагина (см. курс «Сопротивление материалов»).

35 Опоры осей и валов. Подшипники скольжения. Классификация, достоинства и недостатки. Материалы.вкладышей

ВАЛЫ И ОСИ

Колёса передач установлены на специальных продолговатых деталях круглого сечения. Среди таких деталей различают оси и валы [7,11,38].

Ось — деталь, служащая для удержания колёс и центрирования их вращения. Вал — ось, передающая вращающий момент.

Не следует путать понятия "ось колеса", это деталь и "ось вращения", это геометрическая линия центров вращения.

Формы валов и осей весьма многообразны от простейших цилиндров до сложных коленчатых конструкций. Известны конструкции гибких валов, которые предложил шведский инженер Карл де Лаваль ещё в 1889 г.

Форма вала определяется распределением изгибающих и крутящих моментов по его длине. Правильно спроектированный вал представляет собой балку равного сопротивления.

Валы и оси вращаются, а следовательно, испытывают знакопеременные нагрузки, напряжения и деформации. Поэтому поломки валов и осей имеют усталостный характер.

Причины поломок валов и осей прослеживаются на всех этапах их "жизни".

1. На стадии проектирования — неверный выбор формы, неверная оценка концентраторов напряжений.

2. На стадии изготовления — надрезы, забоины, вмятины от небрежного обращения.

3. На стадии эксплуатации — неверная регулировка подшипниковых узлов.

Для работоспособности вала или оси необходимо обеспечить:

è объёмную прочность (способность сопротивляться Mизг и Мкрут);

è поверхностную прочность (особенно в местах соединения с другими деталями);

è жёсткость на изгиб;

è крутильную жёсткость (особенно для длинных валов).

Все валы в обязательном порядке рассчитывают на объёмную прочность.

Подшипник скольжения — опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент — вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основегидродинамической теории смазки. Классификация

В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека.

Подшипники скольжения разделяют:

  1.  в зависимости от формы подшипникового отверстия
  2.  одно- или многоповерхностные,
  3.  со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения),
  4.  со/без смещением центра (для конечной установки валов после монтажа);
  5.  по направлению восприятия нагрузки
  6.  радиальные и
  7.  осевые (упорные, подпятники),
  8.  радиально-упорные;
  9.  по конструкции
  10.  неразъемные (втулочные; в основном для I-1),
  11.  разъемные (состоящие из корпуса и крышки; в основном для всех, кроме I-1),
  12.  встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины);
  13.  по количеству масляных клапанов
  14.  с одним клапаном,
  15.  с несколькими клапанами;
  16.  по возможности регулирования
  17.  нерегулируемые,
  18.  регулируемые.

Достоинства

  1.  Надежность в высокоскоростных приводах
  2.  Способны воспринимать значительные ударные и вибрационные нагрузки
  3.  Бесшумность
  4.  Сравнительно малые радиальные размеры
  5.  Допускают установку разъемных подшипников на шейки коленчатых валов и не требуют демонтажа других деталей при ремонте
  6.  Простая конструкция в тихоходных машинах
  7.  Позволяют работать в воде
  8.  Допускают регулирование зазора и обеспечивают точную установку геометрической оси вала
  9.  Экономичны при больших диаметрах валов

[править]Недостатки

  1.  В процессе работы требуют постоянного надзора за смазкой
  2.  Сравнительно большие осевые размеры
  3.  Большие потери на трение при пуске и несовершенной смазке
  4.  Большой расход смазочного материала
  5.  Высокие требования к температуре и чистоте смазки
  6.  Пониженный коэффициент полезного действия
  7.  Неравномерный износ подшипника и цапфы
  8.  Применение более дорогих материалов

Материалы вкладышей подшипников должны иметь:

1. Достаточную износостойкость и высокую сопротивляемость заеданию в периоды отсутствия жидкостной смазки (пуск, торможение и др.). Изнашиванию должны подвергаться вкладыши, а не цапфа вала, так как замена вала значительно дороже вкладыша. Подшипник скольжения работает тем надежнее, чем выше твер¬дость цапфы вала. Цапфы, как правило, закаливают.

2. Высокую сопротивляемость хрупкому разрушению при действии ударных нагрузок и достаточное сопротивление усталости. 3. Низкий коэффициент трения и высокую теплопроводность с малым расши-рением.

Вкладыши выполняют из следующих материалов:

1) Бронзовые вкладыши широко используют при средних скоростях и больших нагрузках. Наилучшими антифрикционными свойствами обладают оловянные бронзы (БрО10Ф1, Бр05Ц5С5 и др.). Алюминиевые (БрАЭЖЗА и др.) и свинцовые (БрСЗО) бронзы вызывают повышенное изнашивание цапф валов, поэтому применяются в паре с закаленными цапфами. Свинцовые бронзы используют при знакопеременных ударных нагрузках.

2) Вкладыш с баббитовой заливкой применяют для ответственных подшипников при тяжелых и средних режимах работы (дизели, компрессоры и др.). Баббит является одним из лучших антифрикционных материалов для подшипников скольжения. Хорошо прирабатывается, стоек против заедания, но имеет невысокую прочность, поэтому баббит заливают лишь тонким слоем на рабочую поверхность стального, чугунного или бронзового вкладыша. Лучшими являются высокооловянные баббиты Б86, Б83.

3)Чугунные вкладыши без заливки применяют в неответственных тихоходных механизмах. Наибольшее применение получили антифрикционные чугуны АЧС-1

4) Металлокерамические вкладыши изготовляют прессованием и последующим спеканием порошков меди или железа с добавлением графита, олова или свинца. Особенностью этих материалов является большая пористость, которая используется для предварительного насыщения горячим маслом. Вкладыши, пропитанные маслом, могут долго работать без подвода смазочного материала. Их применяют в тихоходных механизмах в местах, труднодоступных для подвода масла.

5) Неметаллические материалы для вкладышей применяют антифрикционные самосмазывающие пластмассы (АСП), древеснослоистые пластики, твердые породы дерева, резину и др. Неметаллические материалы устойчивы против заедания, хорошо прирабатываются, могут работать при смазывании водой, что имеет существенное значение для подшипников гребных винтов, насосов, пищевых машин и т. п.

В массовом производстве вкладыши штампуют из стальной ленты, на которую нанесен тонкий антифрикционный слой (оловянные и свинцовые бронзы, баббиты, фторопласт, нейлон и др.).

 36 Подшипники скольжения. Подвод смазочного материала. Материалы деталей подшипников. Критерий работоспособности

Подшипник скольжения, опора или направляющая механизмаили машины, в которой трение происходит при скольжении сопряжённых поверхностей. По направлению восприятия нагрузки различают радиальные и осевые (упорные) П. с. В зависимости от режима смазки П. с. делятся на гидродинамические и гидростатические, газодинамические и газостатические (роль смазки выполняет воздух или нейтральный газ), с твёрдой смазкой. Существует множество конструктивных типов П. с.: самоустанавливающиеся, сегментные, самосмазывающиеся и др.

§ 23.8. Подвод смазочного материала. К.п.д.

Смазочный материал подводится в подшипник по ходу вращения цапфы в зону зазора, где отсутствует гидродинамическое давление (см. рис. 23.6, б). Распределение его по длине вкладыша осуществляется смазочными канавками, которые располагают в ненагруженной зоне вкладыша (см. рис. 23.1 и 23.3). В местах стыка вкладышей делают неглубокие карманы-холодильники / (рис. 23.8), которые охлаждают смазочный материал, распределяют его по длине цапфы и собирают продукты изнашивания.

. Жидкие масла подаются в подшипники самотеком с помощью смазочных устройств или под давлением от шестеренчатых и других насосов. Смазочные устройства многочисленны и разнообразны.

По характеру подачи смазочного материала различают устройства для периодического (рис. 23.9) и непрерывного (рис. 23.12)смазывания, а в зависимости от вида смазочного материала— для пластичного (рис. 23.10) и жидкого (рис. 23.11).

Через пресс-масленки (см. рис. 23.9) смазочный материал подается к трущимся поверхностям под давлением с помощью шприца. Эти масленки малогабаритны и могут устанавливаться в труднодоступных местах.

Колпачков ые масленки (см. рис. 23.10) служат для подачи пластичного смазочного материала. Здесь мазь периодически выдавливается через канал масленки путем подвинчи- вания колпачка, заполненного мазью.

Фитильные масленки (см. рис. 23.11) обеспечивают непрерывность подачи масла, фильтруя его при прохождении через фитиль. Фитильное смазывание основано на принципе сифона, осуществляемого капиллярами хлопчатобумажного фитиля. Конец фитиля, вставленный в трубку масленки, должен быть ниже дна масляного резервуара. Недостатком этих масленок является зависимость подачи масла от его уровня в масленке, а также расход масла в нерабочий период.

Подвод масла кольцом (см. рис. 23.12) является наиболее совершенным способом смазывания подшипников. Осуществляется свободно висящим на цапфе кольцом. От силы трения между цапфой и кольцом последнее вращается, захватывает из ванны масло и подает его на цапфу. Отработавшее масло стекает в ванну и вновь захватывается кольцом.

Смазывание разбрызгиванием применяется в герметически закрытых механизмах (редукторах, коробках передач и т. п.), в которых масло захватывается вращающимися деталями и разбрызгивается

материалы деталей подшибников:.

Стали, применяемые для подшипников качения, можно разделить на две группы — высокоуглеродистые твердокалящиеся и малоуглеродистые цементуемые. Преобладающую массу подшипников в мировом производстве изготовляют из твердокаля-щихся высокоуглеродистых сталей. Наибольшее распространение получила высокоуглеродистая хромистая сталь типа ШХ15 (52100 по сортаменту США).

38 Подшипники качения. Условные обозначения. Виды повреждений.

Подшипники качения, как и подшипники скольжения, предназначены для поддержания вращающихся осей и валов.

Электродвигатели, подъемно-транспортные и сельскохозяйственные машины, летательные аппараты, локомотивы, вагоны, металлорежущие станки, зубчатые редукторы и многие другие механизмы и машины в настоящее время немыслимы без подшипников качения.

Подшипники качения состоят из двух колец — внутреннего 1 и наружного 3, тел качения 2 (шариков или роликов) и сепаратора 4 (рис. 16, а). В зависимости от: формы тел качения различают подшипники шариковые (рис. 16, д, б, ж, и) и роликовые (рис. 16, в, г, е, з, к). Разновидностью роликовых подшипников являются игольчатые подшипники (рис. 16, д).

Основными элементами подшипников качения являются тела качения — шарики или ролики, установленные между кольцами и удерживаемые сепаратором на определенном расстоянии друг от друга.

По классам точности подшипники различают следующим образом:

"0" – нормального класса;

"6" – повышенной точности;

"5" – высокой точности;

"4" – особовысокой точности;

"2" – сверхвысокой точности.

Виды разрушения подшипников качения и критерии работоспособности

Главная особенность динамики подшипника – знакопеременные нагрузки.

Основные причины потери работоспособности подшипников качения следующие:

Усталостное выкрашивание рабочих поверхностей тел качения и дорожек качения колец в виде раковин или отслаивания (шелушения) вследствие циклического контактного нагружения. Циклическое перекатывание тел качения может привести к появлению усталостной микротрещины. Постоянно прокатывающиеся тела качения вдавливают в эту микротрещину смазку. Пульсирующее давление смазки расширяет и расшатывает микротрещину, приводя к усталостному выкрашиванию и, в конце концов, к поломке кольца. Чаще всего ломается внутреннее кольцо, т.к. оно меньше наружного и там, следовательно, выше удельные нагрузки. Усталостное выкрашивание является основным видом разрушения подшипников при хорошем смазывании и защите от попадания абразивных частиц. Обычно наблюдается после длительной работы и сопровождается повышенным шумом и вибрациями.

Смятие рабочих поверхностей дорожек и тел качения (образование лунок и вмятин) вследствие местных пластических деформаций под действием ударных или больших статических нагрузок.

Задиры рабочих поверхностей качения при недостаточном смазывании или слишком малых зазорах из-за неправильного монтажа.

Абразивное изнашивание вследствие плохой защиты подшипника от попадания абразивных частиц (строительные, дорожные, сельскохозяйственные машины, ткацкие станки). Совершенствованием конструкций уплотнений подшипниковых узлов можно уменьшить износ рабочих поверхностей подшипника.

Разрушение сепараторов от действия центробежных сил и воздействия на сепаратор разноразмерных тел качения. Этот вид разрушение является основной причиной потери работоспособности быстроходного подшипников.

Разрушение колец и тел качения из-за перекосов колец при монтаже или действия больших динамических нагрузок (скалывание бортов, раскалывание колец и др.).

Внешними признаками нарушения работоспособности подшипников являются: потеря точности вращения, повышенный шум, повышенное сопротивление вращению.

Критерии работоспособности. Основными критериями работоспособности подшипников качения являются долговечность по усталостному выкрашиванию и статическая грузоподъемность по пластическим деформациям.

Расчет на долговечность выполняют для подшипников, вращающихся с частотой вращения n > 10 мин-1. Невращающиеся подшипники или медленно вращающиеся (с частотой вращения n < 10 мин-1) рассчитывают на статическую грузоподъемность.

39 Подшипники качения. Встроенные уплотняющие устройства. Подвод смазочного материала .

При картерном смазывании передач подшипники смазывают брызгами масла. Разбрызгивание масла внутри корпуса механизмов происходит с помощью специальных лопастей-крыльчаток либо зубчатых колёс и применяется для создания масляного тумана, который способствует выравниванию температуры и теплоотводу от механизма. Если скорость >1 м/с брызгами покрыты все детали передач и внутренние поверхности стенок корпуса. Стекающее масло попадает в подшипник. Иногда в масло опускают быстроходную шестерню или червяк вместе с подшипником. Для того чтобы подшипник не засорился используют маслозащитные шайбы. Если подшипник конической шестерни находится далеко от масляной ванны, то на фланце корпуса в разъеме делают канавки, а на крыше корпуса скосы. Со стенок крышки корпуса в канавки стекают брызги масла и через отверстия попадают в подшипник.

Если маслу тяжело пробраться в подшипник, то в редуктор встраивается насос, который подает масло в распределительное устройство и потом уже по трубкам масло попадает в подшипник.

К подшипникам качения масло подводится так, что оно стекает в картер через подшипник. Масло может подводиться либо снаружи корпуса либо изнутри. Если применение насоса нежелательно, то применяют пластичные смазочные материалы, для подачи которого применяются пресс-масленки. Смазочный материал подается специальным шприцом.

Однако проектировщику не следует надеяться на то, что разбрызгиванием будут достаточно смазаны подшипники, находящиеся выше уровня масляной ванны.

Достоинства применения жидких смазочных материалов: возможность централизованного смазывания с автоматизацией процесса подачи смазочного материала. Применение жидкого смазочного материала допускает полную его смену без разборки узла, хорошо отводит тепло. Периодичность замены масла — 3—6 месяцев, пополнение — 1—2 раза в месяц.

Пластичный смазочный материал представляет собой тонкую механическую смесь минерального масла и мыла. Его набивают в корпус подшипника при сборке узла и пополняют один раз в два—четыре месяца. Полную замену смазочного материала производят не реже одного раза в год.

Их недостаток в том, что в конструкции требуется предусматривать специальные полости. Эту полость первоначально заполняют на 2/3 объёма при n 1500 об/мин или на 1/2 объёма при n > 1500 об/мин. В дальнейшем обычно через каждые три месяца через пресс-маслёнки добавляют свежую смазку, а через год её меняют с предварительной разборкой и промывкой узла. Также они имеют чувствительность к изменению температуры, повышенное внутреннее трение; возможность применения только при сравнительно низких угловых скоростях вращающихся колец.

При консистентной смазке необходимо применение щелевых, лабиринтных и центробежных уплотнений.

Пластичные смазочные материалы по сравнению с жидкими имеют следующие преимущества: не вытекают из узлов при нормальных условиях работы; лучше защищают подшипники от коррозии; могут работать в узле без пополнения в течение продолжительного времени (до одного года) и без особого надзора; требуют менее сложных конструкций уплотнительных устройств.

В зависимости от условий работы применяют различные способы подачи смазочного материала к зоне трения деталей

Торцевые уплотнения имеют сложную конструкцию, большие размеры, высокую стоимость, но и он является очень хорошим уплотнителем по торцевой поверхности. Торцовый уплотнитель состоит из двух колец и пружины, одно кольцо имеет дополнительный статический уплотнитель.

Щелевые и лабиринтные уплотнения устраняют недостатки, имеющие место в уплотнениях контактного типа.

Щелевые уплотнения (рис. 30, г) имеют две-три кольцевые канавки в крышке корпуса подшипника (зазор с = 0,1 - 0,4 мм). Канавки и зазор оказывают значительное гидравлическое сопротивление вытекающему из корпуса смазочному материалу. Зазор щелевых уплотнений заполняют пластинчатым смазочным материалом, который защищает подшипник от попадания в него пыли и влаги. Но данные уплотнителя применяются в сочетании с другими, т.к. не обеспечивают полной герметичности.

Аналогично устроено лабиринтное уплотнение. В уплотнении этого типа радиальные и осевые щели делают сложной формы, напоминающей лабиринт (рис. 30, в). Оно препятствуют протеканию жидкостей и даже газа через каскад щелей и камер, так, типовая букса грузового вагона имеет четырёхкамерное лабиринтное уплотнение с зазором 0,8 мм;

Лабиринтные и щелевые уплотнения работают при окружных скоростях до 30 м/с.

Недостатком этих уплотнений является ненадежная защита смазочного материала от пыли и невозможность их применения при высокой температуре.

Центробежные, действующие за счёт центробежной силы, неэффективны при остановке машины.

Известны конструкции подшипников со встроенными уплотнениями, (рис. 31), в которых имеются защитные шайбы, а смазочный материал вносится при монтаже подшипников.

Упругие стальные шайбы применяются при скорости скольжения до 6 м/с и смазывании подшипников любым смазочным материалом.

Центробежные комбинированные уплотнения. Конструкция центробежных уплотнений проста. Они применяются если скорость вала > 0,5 м/с. Они эффективны, если вал расположен выше уровня масла.

Для увеличения уплотняющего эффекта используют комбинированные уплотнители.

 

40 Подшипники. Подбор подшипников на заданный ресурс

Валы и оси поддерживаются специальными деталями, которые являются опорами. Название "подшипник" происходит от слова "шип" (англ. shaft, нем. zappen, голл. shiffen – вал). Так раньше называли хвостовики и шейки вала, где, собственно говоря, подшипники и устанавливаются.

Подшипники служат опорами для валов и вращающихся осей, воспринимают радиальные и осевые нагрузки, приложенные к валу, и передают их на корпус машины. При этом вал должен фиксироваться в определенном положении и легко вращаться вокруг заданной оси. Во избежание снижения КПД машины потери в подшипниках должны быть минимальными.

По характеру трения подшипники разделяют на две большие группы:

- подшипники скольжения (трение скольжения);

- подшипники качения (трение качения).

Подбор подшипников практически сводится к следующей схеме:

1. По назначению узла выбирают тип подшипника. Так, например, если на подшипник действует только радиальная нагрузка, то можно выбирать любой радиальный подшипник.

2. Если подшипник находится под действием комбинированной нагрузки (значительной осевой и радиальной), то применяют радиально-упорные подшипники типов 6 и 7. Если же осевая нагрузка больше радиальной, то устанавливают упорный подшипник в комбинации с радиальным или упорно-радиальный подшипник. При действии одной осевой нагрузки устанавливают упорные подшипники типов 8 и 9.

3. Основным критерием для выбора подшипника служит его динамическая грузоподъемность. Если подшипник воспринимает нагрузку в неподвижном состоянии или его вращающееся кольцо имеет частоту вращения не более 1 об/мин, то подшипник выбирают по статической грузоподъемности без проверки его долговечности.

42 Шпоночные и зубчатые соединения. Виды соединений. Конструкция.

Шпоночные соединения

Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шпоночных соединений

Шпоночные и шлицевые соединения служат для закрепления на валу (или оси) вращающихся деталей (зубчатых колес, шкивов, муфт и т. п.), а также для передачи вращающего момента от вала 1 к ступице детали 2 или, наоборот, от ступицы к валу (рис. 46 и 47).

Шпоночное соединение образуют вал, шпонка и ступица колеса (шкива, звездочки и др.). Шпонка представляет собой стальной брус, устанавливаемый в пазы вала и ступицы. Она служит для передачи вращающего момента между валом и ступицей. Основные типы шпонок стандартизованы. Шпоночные пазы на валах получают фрезерованием дисковым или концевыми фрезами, в ступицах протягиванием.

Достоинства шпоночных соединений.

- простота конструкции, дешевизна и сравнительная легкость монтажа и демонтажа, вследствие чего их широко применяют во всех отраслях машиностроения.

Недостатки шпоночных соединений.

- шпоночные пазы ослабляют вал и ступицу насаживаемой на вал детали (из-за этого приходится увеличивать толщину ступицы и диаметр вала). Ослабление вала обусловлено не только уменьшением его сечения, но главное, значительной концентрацией напряжений изгиба и кручения, вызываемой шпоночным пазом.

- шпоночные соединения нарушают центрирование колеса на валу (для этого приходится применять две противоположные шпонки;

- шпоночное соединение трудоемко в изготовлении: при изготовлении паза концевой фрезой требуется ручная пригонка шпонки по пазу; при изготовлении паза дисковой фрезой крепление шпонки в пазу винтами (от возможных осевых смещений);

- трудность обеспечения их взаимозаменяемости (необходимость ручной подгонки шпонок), что ограничивает их применение в крупносерийном и массовом производстве.

 

По конструкции шпонки подразделяют на:

- призматические со скругленными исполнение 1 (рис. 48, а, в, и рис. 49) и плоскими торцами исполнение 2 (рис. 48, б, г и рис. 49); с одним плоским, а другим скругленным торцом исполнение 3 (рис. 49); эти шпонки не имеют уклона и их закладывают в паз, выполненный на валу (рис. 48, в, г — шпонки имеют отверстия для их закрепления). Шпонки исполнения 1 рекомендуются для более точных соединений.

Призматические направляющие шпонки с креплением на валу применяют в подвижных соединениях для перемещения ступицы вдоль вала.

Рабочими являются боковые, более узкие грани шпонок высотой h. Размеры сечения шпонки и глубины пазов принимают в зависимости от диаметра d вала.

Шпонку запрессовывают в паз вала. Шпонку с плоскими торцами кроме того помещают вблизи деталей (концевых шайб, колец и др.), препятствующих ее возможному осевому перемещению. Призматические шпонки не удерживают детали от осевого смещения вдоль вала. Для фиксации зубчатого колеса от осевого смещения применяют распорные втулки, установочные винты и др.

 

Шлицевые (зубчатые) соединения

Назначение и краткая характеристика основных типов, достоинства и недостатки, область применения шлицевых соединений

Шлицевые соединения можно рассматривать как многошпоночные, в которых шпонки как бы изготовлены заодно с валом. Рабочими поверхностями являются боковые стороны зубьев. В последние годы, в связи с общим повышением напряжений в деталях машин, шлицевые соединения получили самое широкое распространение взамен шпонок. Этому способствует оснащение промышленности специальным оборудованием -шлицефрезерными и протяжными станками. Некоторые авторы называют их зубчатыми соединениями.

Шлицевые соединения образуются выступами - зубьями на валу, ходящими во впадины соответствующей формы в ступице. Вал и отверстие в ступице обрабатывают так, чтобы боковые поверхности зубьев или участки цилиндрических поверхностей (по внутреннему или наружному диаметру зубьев) плотно прилегали друг к другу. Соответственно различают шлицевые соединения с центрированием по боковым поверхностям зубьев, по внутреннему или наружному диаметру. Центрирование по диаметрам обеспечивает более высокую соосность вала и ступицы, а центрирование по боковым граням обеспечивает более равномерное распределение нагрузки по зубьям. По характеру соединения различают: неподвижные – для закрепления детали на валу; подвижные - допускающие перемещение детали вдоль вала (например, блока шестерен коробки передач станка).

Соединения по признаку возможности разборки делят на разъемные и неразъемные.

Разъемными называют соединения, которые разъединяются без повреждения деталей. К ним относятся резьбовые, шпоночные, зубчатые и профильные соединения. Основным расчетом соединений является расчет на прочность. Расчет на прочность является основным критерием для расчета всех соединении. При этом необходимо стремиться к тому, чтобы прочность соединяемых и соединительных деталей была одинаковой.

Неразъемными называют соединения, разъединение которых невозможно без разрушения соединяемых деталей или соединяющего материала. К ним относят заклепочные, сварные клеевые, паяные соединения, а также соединения с натягом.

Основные резьбовые крепежные детали — болты, винты, шпильки, гайки, а также шайбы и устройства, предохраняющие резьбовые соединения от самоотвинчивания, гаечные ключи.

Болтом (см. рис. 14, а) называется резьбовое изделие цилиндрической (или конической) формы, снабженное на одном конце головкой, а на другом резьбой, на которую навинчивается гайка. На рис. 14, б показан винт.

Резьбовое изделие цилиндрической формы, снабженное на одном конце головкой, а на другом резьбой (гайкой служит деталь), называется винтом.

Болтами (рис. 14, а) скрепляют детали не очень большой толщины. Отверстия в соединяемых деталях выполняют несколько большего диаметра, чтобы можно было легко вставить болт, не повредив резьбы. С торца головку болта обтачивают на конус (снимают фаску), чтобы срезать вершины углов призмы, которые могут создавать затруднения при захватывании ключом. Болт требует для размещения гайки много места что увеличивает габариты и вес конструкции. Зато, при обрыве он легко заменяется.

Винт может иметь головку разной формы, в частности и шестигранную. Винт ввертывается в корпус и поэтому требует мало места для размещения, что сокращает размеры и вес конструкции. Однако, при сборке, резьба в корпусе (в особенности чугунном или алюминиевом) может быть повреждена. При обрыве трудно извлечь оставшуюся в резьбе часть винта.

Резьбу у болтов накатывают или нарезают на заготовках, полученных горячей высадкой из прутка. Болты также изготовляют из фасонного прутка (шестигранного или другого профиля) на токарно-винторезных станках или автоматах.

Болты и винты находят широкое применение во всех отраслях машиностроения для получения разъемных соединений. Они стандартизованы.

Конструктивные формы болтов и винтов. По форме головки болты и винты бывают с шестигранной головкой (рис. 15, а), квадратной (рис. 15, б), цилиндрической (рис. 15, в), полукруглой (рис. 15, г), потайной (рис. 15, д) с углублением под шестигранный ключ (рис. 15, е) или специальную отвертку (рис. 15, ж). Имеются и другие конструкции головок.

Болты, как правило, имеют головку, захватываемую снаружи инструментом — гаечным ключом, рис. 15, а, б, винты — специальным торцовым ключом (рис. 15, в—ж) и с головками, препятствующими проворотувинта.

43 Шпоночные и зубчатые соединения. Расчеты на смятие и износостойкость.

Проверочный расчет на прочность прямобочных зубчатых соединений аналогичен расчету призматических шпонок.

В зависимости от диаметра вала d (рис. 65) по табл. 7 выбирают параметры зубчатого соединения, после чего соединение проверяют на смятие. Проверку зубьев на срез не производят.

При расчете допускают, что по боковым поверхностям зубьев нагрузка распределяется равномерно, но из-за неточности изготовления в работе участвует только 75% общего числа зубьев (т.е. коэффициент неравномерности распределения нагрузки между зубьями (шлицами) Кшл = 0,75).

По аналогии с условием (34)

 (40)

где Т — момент, Нмм; Кшл = 0,75; zчисло зубьев (выбирают в зависимости от d по табл. 7); dcp = (D + d)/2 — средний диаметр соединения для прямобочных зубьев, мм; dcp = zm – средний диаметр соединения дляэвольвентных зубьев, где т модуль зубьев; - площадь смятия, мм2; lр — рабочая длина зубьев, мм; D, l, r (см. рис. 65) — выбирают в зависимости от d по табл. 7; - допускаемое напряжение на смятие боковых граней зубьев из сталей, имеющих > 500 МПа ( принимают по табл. 8). В таблице 8 приведены значения для изделий общего машиностроения и подъемно-транспортных устройств, рассчитанных на длительный срок службы. В каждой отрасли машиностроения рекомендуют свои значения с учетом специфики эксплуатации (срок службы, режим нагрузки и пр.), качества изготовления, прочности материалов и др.

Например, в станкостроении рекомендуют более низкие значения: = 12 20 МПа для неподвижных соединений и  = 4 7 МПа для подвижных без нагрузки – здесь учитывают влияние соединений на точность станков; в авиации для соединений валов с зубчатыми колесами рекомендуют более высокие значения = 50 100 МПа для получения легких конструкций.

Расчет на прочность соединений с призматическими шпонками

Основным критерием работоспособности шпоночных соединений является прочность. Шпонки выбирают по таблицам ГОСТов в зависимости от диаметра вала, а затем соединения проверяют на прочность. Размеры шпонок и пазов подобраны так, что прочность их на срез и изгиб обеспечивается, если выполняется условие прочности на смятие, поэтому основной расчет шпоночных соединений расчет на смятие. Проверку шпонок на срез в большинстве случаев не проводят. При расчете многошпоночного соединения допускают, что нагрузка распределяется равномерно между всеми шпонками.

Рекомендуемая последовательность проектировочного расчета.

В зависимости от диаметра вала d по табл. 6 выбирают размеры шпонки b х h, а ее длину принимают на 5-10 мм меньше длины ступицы, округляя до ближайшего большего значения по стандарту (некоторые стандартные значения l приведены в табл. 6). После подбора шпонки соединение проверяют на смятие. Напряжения смятия определяют в предположении их равномерного распределения по поверхности контакта:

где Ft=2T/d — сила, передаваемая шпонкой; Асм — площадь смятия (рис. 60); .

На смятие рассчитывают выступающую из вала часть шпонки.

 

44 Резьбовые соединения. Основные виды резьб.

Резьбовые соединения

Резьба – поверхность, образованная при винтовом движении плоского контура по цилиндрической или конической поверхности. Применяется как средство соединения, уплотнения или обеспечения заданных перемещений деталей машин, механизмов, приборов и т. п.

Основы образования резьбы

В основе образования резьбы лежит принцип получения винтовой линии. Винтовая линия – это пространственная кривая, которая может быть образована точкой, совершающей движение по образующей какой-либо поверхности вращения, при этом сама образующая совершает вращательное движение вокруг оси.

Если в качестве поверхности принять цилиндр, то полученная на его поверхности траектория движения точки называется цилиндрической винтовой линией. Если движение точки по образующей и вращение образующей вокруг оси равномерны, то винтовая цилиндрическая линия является линией постоянного шага. На развертке боковой поверхности цилиндра (рис.2) такая винтовая линия преобразуется в прямую линию.

Если на поверхности цилиндра или конуса прорезать канавку по винтовой линии, то режущая кромка резца образует винтовую поверхность, характер которой зависит от формы режущей кромки. Образование винтового выступа можно представить как движение треугольника, трапеции, квадрата по поверхности цилиндра или конуса так, чтобы все точки фигуры перемещались по винтовой линии (рис.3). В случае, если подъем винтового выступа на видимой (передней) стороне идет слева направо, резьба называется правой, если подъем винтового выступа идет справа налево – левой. Чаще всего используют правую резьбу. Левую резьбу применяют только в специальных механизмах. Если по поверхности перемещаются одновременно два, три и более плоских профиля, равномерно расположенные по окружности относительно друг друга, то образуются двух- и трехзаходные винты. В качестве примера образования одно-, двух- и трехзаходной резьбы можно рассмотреть процесс навивки на цилиндрическую поверхность проволоки треугольного сечения (витки плотно прилегают друг к другу). Для однозаходной резьбы (рис.4,а) величина хода винта Рh равна шагу Р. Для двух- (рис.4,б) и трехзаходных (рис.4,в) винтов, когда осуществляется одновременная навивка соответственно двух и трех проволок указанного сечения, величина хода соответственно равняется 2Р – для двухзаходного винта и ЗР – для трехзаходного. Наиболее распространена однозаходная резьба. Все крепежные резьбы однозаходные. Многозаходные резьбы применяются преимущественно в винтовых механизмах.

Приведенные положения, с некоторыми изменениями и уточнениями, могут быть отнесены и к конической поверхности.

45 Геометрические параметры резьбы

Геометрические параметры резьбы.

Основными параметрами резьбы являются (рис. 6): форма и размер профиля; dнаружный диаметр; d1  внутренний диаметр (номинальные значения d и d1 одинаковы для винта и гайки, зазоры во впадинах образуются за счет предельных отклонений размеров диаметров); d2 средний диаметр (диаметр воображаемого цилиндра, образующая которого пересекает резьбу в таком месте, где ширина выступа равна ширине канавки); h  рабочая высота профиля, по которой соприкасаются боковые стороны резьб винта и гайки; р шаг резьбы (расстояние между одноименными сторонами соседних профилей, измеренное в направлении оси резьбы); ph  ход винта для многозаходных резьб, равный произведению шага на число заходов;   угол профиля;  угол подъема (угол подъема развертки винтовой линии по среднему диаметру), который определяется как

47 Виды резьбовых соединений

  1.  Метрические - резьбы с треугольным профилем ( болтовые соединения.)
  2.   Дюймовые - применялась в старых машинах для крепежных соединений деталей болтами, шпильками.
  3.  Трапецеидальные - применяются для ходовых винтов и других силовых передач.
  4.  Упорные - применяется для ходовых винтов и других силовых передач с односторонней нагрузкой.
  5.  Прямоугольные - редко используемая резьба для ходовых винтов и других силовых передач.
  6.  Трубные цилиндрические - для плотного соединения тонкостенных полых деталей (труб).
  7.  Трубные конические - для плотного соединения тонкостенных полых деталей (труб). Дополнительная плотность соединения достигается деформацией витков.
  8.   Конические дюймовые - с углом профиля 60о для плотных соединений деталей.
  9.  Модульные - используется для червяков в червячной передаче. Профиль резьбы - трапеция

48Расчет болтов при осевой и поперечной нагрузке.

Расчет резьбового соединения на прочность при осевом и поперечном статическом нагружении

Замечено, что выход из строя болтов, винтов, шпилек и т. п. обычно происходит вследствие разрыва (или вытяжки) их стержня (рис. 34) по резьбе или переходному сечению у головки. Вследствие разрушения или повреждений резьбы резьбовые изделия выбывают из строя реже.

Для обеспечения прочности резьбовых соединений для болта определяют диаметр ds в его опасном сечении (в дальнейшем для краткости под словом «болт» будем подразумевать и другие резьбовые изделия: винты, шпильки, стержни с резьбой и т. п.). Затем определяют его остальные размеры. Размеры болта, гайки, шайбы принимают в зависимости от диаметра резьбы по соответствующим ГОСТам.

Расчет незатянутого болта, нагруженного внешней растягивающей силой.

Этот случай встречается редко. Примером служит нарезанный участок крюка для подвешивания груза. Опасным бывает сечение, ослабленное резьбой. На рис. 35 показан пример такого резьбового соединения. Стержень крюка работает только на растяжение. Резьбовое соединение, рассматриваемое в данном случае, называют ненапряженным.

Проверочный расчет ненапряженного болтового соединения. Условие прочности на растяжение:

  (9)

где и — соответственно расчетное и допускаемое напряжения растяжения в поперечном сечении нарезанной части болта; F — растягивающая сила; d1— внутренний диаметр резьбы болта.

Проектировочный расчет ненапряженного болтового соединения сводится к определению внутреннего диаметра резьбы d, из условия прочности (9):

 (10)

где допускаемое напряжение на растяжение; — предел текучести материала болта; — допускаемый коэффициент запаса прочности. Для болтов из углеродистой стали принимают . Большие значения коэффициента запаса принимают при невысокой точности определения величины нагрузки F или для конструкций повышенной ответственности.

 

49 Расчет групповых соединений

Расчет групповых резьбовых соединений

Под групповыми соединениями понимают такие соединения, в которых число винтов (болтов) г > 2 . Встречаются два вида таких соединений: а) нагрузка действует в плоскости стыка соединяемых деталей (рис. 2.16); б) нагрузка действует в плоскости, перпендикулярной плоскости стыка (рис. 2.19 и 2.24). Такие соединения нашли наибольшее использование в технике и строительстве.

Соединение, нагруженное силой и моментом в плоскости стыка (а), и его расчетная схема (6)

 

Расчет групповых резьбовых соединений может выполняться как проектный, когда по заданным нагрузкам и принятым материалам определяют основные размеры винтов (болтов), или как проверочный, когда при известных размерах и материалах определяют прочность винтов(болтов).

Точные решения этих задач являются весьма сложными. На практике используют обычно приближенные способы расчетов, принимая ряд допущений.

2.8.1. Расчет резьбовых соединений, нагруженных силами и моментами, действующими в плоскости стыка

Расчет такого соединения рассмотрим на примере кронштейна, закрепленного с помощью ζ винтов и нагруженного силой F (рис. 2.16, а). Болты в таком соединении могут быть установлены Ήΐΐηι с зазором (рис, 2.17, а), либо без зазора (рис. 2.17, б).

При расчете принимают следующие допущения:

а) деформации соединяемых деталей не учитываются, т.е. ■и-ниш предполагаются абсолютно жесткими;

б) возможный взаимный поворот соединяемых деталей при •систнии момента происходит относительно центра тяжести 11ПЧМ! О) сечений винтов (болтов);

и| внешние нагрузки передаются с одной детали на другую ι· it*.км,по через зоны, расположенные вокруг винтов;

ι ) силы Fn от момента в винтах (болтах) соединения прямо "Ι  расстояниям до них отточки О, т. е. С учетом перечисленных допущений расчетная схема имеет вид, изображенный на рис. 2.16, б. На схеме равнодействующая внешней нагрузки приложена в точке О и представлена в виде сил (F] и F2 ) и момента Τ ~ΡλΙ.

Условия равновесия для соединения могут быть записаны в

виде

 

 

Выразив силы F2T...Fn через FlT с учетом 2.11, получим

Отсюда сила от момента, действующая на наиболее нагруженные винты, расположенные на расстоянии η от точки О, равна

 

 

 

где — число винтов, расположенных на одинаковых расстояниях /■ от точки О.

50 Сварные соединения. Виды соединений и виды швов.

Сварное соединение - неразъемное соединение, выполненное сваркой. Сварное соединение (рис. 1.1) включает три образующиеся в результате сварки характерные зоны металла в изделии: зону сварного шва 1, зону сплавления 2, зону термического влияния 3, а также часть основного металла 4, прилегающую к зоне термического влияния. Рис. 1.1. Сварное соединение

Сварной шов - участок сварного соединения, образовавшийся в результате кристаллизации расплавленного металла.

Металл шва - сплав, образованный расплавленным основным и наплавленным металлами или только переплавленным основным металлом.

Основной металл - металл подвергающихся сварке соединяемых частей.

Зона сплавления - зона, где находятся частично оплавленные зерна металла на границе основного металла и металла шва. Эта зона нагрева ниже температуры плавления. Нерасплавленные зерна в этой зоне разъединяются жидкими прослойками, связанными с жидким металлом сварочной ванны и в эти прослойки имеют возможность проникать элементы, введенные в ванну с дополнительным металлом или сварочными материалами. Поэтому химический состав этой зоны отличен от химического состава основного металла.

Зона термического влияния - участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, наплавке или резке.

Тип сварного соединения определяет взаимное расположение свариваемых элементов. Различают: стыковые, угловые, тавровые, нахлесточные и торцовые сварные соединения.

Стыковое соединение - сварное соединение двух элементов, примыкающих друг к другу торцовыми поверхностями и расположенных в одной плоскости или на одной поверхности (рис. 1.2). Поверхности элементов могут быть несколько смещены при соединении листов разной толщины (см. рис. 1.2, б).

Угловое соединение - сварное соединение двух элементов, расположенных под углом и сваренных в месте примыкания их краев Тавровое соединение - сварное соединение, в котором торец одного элемента примыкает под углом и приварен к боковой поверхности другого элемента Нахлесточное соединение - сварное соединение, в котором сваренные элементы расположены параллельно и частично перекрывают друг друга (рис. 1.5, а, б). Отсутствие опасности прожогов при сварке облегчает применение высокопроизводительных режимов сварки. Применение нахлесточных соединений облегчает сборку и сварку швов, выполняемых при монтаже конструкций (монтажных швов).

Торцовое соединение - сварное соединение, в котором боковые поверхности сваренных элементов примыкают друг к другу

52Муфты. Назначение, классификация. Устройство нерасцепляемых глухих муфт

Общие сведения

В технике муфты — это соединительные устройства для тех валов, концы которых подходят один к другому вплотную или же удалены на небольшое расстояние. Соединение валов муфтами обеспечивает передачу вращающего момента от одного вала к другому. Валы, как правило, расположены так, что геометрическая ось одного вала составляет продолжение геометрической оси другого вала. С помощью муфт можно также передать вращение с валов на зубчатые колеса, шкивы, свободно насаженные на эти валы.

Муфты не изменяют вращающего момента и направления вращения. Некоторые типы муфт поглощают вибрации и точки, предохраняют машину от аварий при перегрузках.

Применение муфт в машиностроении вызвано необходимостью:

- получения длинных валов, изготовляемых из отдельных частей, компенсации небольших неточностей монтажа в относительном расположении соединяемых валов;

- придания валам некоторой относительной подвижности во время работы (малые смещения и перекос геометрических осей валов);

- включения и выключения отдельных узлов;

- автоматического соединения и разъединения валов в зависимости от пройденного пути, направления передачи вращения, угловой скорости, т. е. выполнения функций автоматического управления;

- уменьшение динамических нагрузок.

Современные машины состоят из ряда отдельных частей с входными и выходными концами валов, которые соединяют с помощью муфт

Классификация муфт.

Многообразие конструкций муфт усложняет их классификацию. Простейшая муфта сделана из куска ниппельной трубочки и соединяет вал электромоторчика с крыльчаткой автомобильного омывателя стекла. Муфты турбокомпрессоров реактивных двигателей состоят из сотен деталей и являются сложнейшими саморегулирующимися системами.

 Группы муфт различают по характеру соединения валов.

- Муфты механического действия:

а) жесткие (глухие) — практически не допускающие компенсации радиальных, осевых и угловых смещений валов;

б) компенсирующие — допускающие некоторую компенсацию радиальных, осевых и угловых смещений валов благодаря наличию упругих элементов (резиновых втулок, пружин и др.);

в) фрикционные — допускающие кратковременное проскальзывание при перегрузках.

- Муфты электрического (электромагнитного) действия.

- Муфты гидравлического или пневматического действия.

В электрических и гидравлических муфтах, используют принципы сцепления за счет электромагнитных и гидравлических сил. Эти муфты изучают в специальных курсах. Далее анализируются только механическиемуфты. Большинство применяемых муфт стандартизованы. Основной характеристикой при подборе муфт по каталогу или справочнику является передаваемый момент, учитывающий наиболее тяжелое условие еенагружения.

Жёсткие (глухие) муфты

С помощью этих муфт осуществляется жесткое соединение валов. Могут быть втулочными или фланцевыми.

Втулочная муфта является простейшей из жестких муфт. Она представляет собой втулку 3 (рис.2), посаженную с помощью шпонок, штифтов или шлицев на выходные концы валов 1 и 2.

Втулочные муфты находят применение в тихоходных и неответственных конструкциях машин при диаметрах валов d < 70 мм.

Достоинство таких муфт — простота конструкции и малые габаритные размеры; недостатки — необходимость при монтаже и демонтаже раздвигать концы валов на полную длину муфты либо сдвигать втулку вдоль вала не менее чем на половину ее длины; необходимость очень точного совмещения валов, так как эти муфты не допускают радиального или углового смещения осей валов (рис.3).

Материал для изготовления втулки — сталь 45; для муфт больших размеров — чугун СЧ25.

    

Фланцевая муфта состоит из двух полумуфт 1 и 2 (рис.4), соединенных болтами 4. Для передачи вращающего момента используют шпоночные или шлицевые соединения. Вращающий момент передаётся за счёт сил трения между фланцами, а когда болты вставлены без зазора, то также и болтами. Фланцевые муфты стандартизованы в диапазоне диаметров 12...250 мм и передают моменты 8...45000 Нм. В тяжёлых машинах полумуфты приваривают к валам.

Эти муфты называют иногда поперечно-свертными. Для лучшего центрования фланцев на одной полумуфте делают круговой выступ, на другой — выточку того же диаметра (рис.4, а) или предусматривают центрующее кольцо

Фланцевые муфты могут передавать значительные вращающие моменты; имеют широкое распространение в машиностроении. Употребляются для валов диаметром d < 350 мм. Достоинство этих муфт — простота конструкции и легкость монтажа; недостаток — необходимость точного совмещения валов и точного соблюдения перпендикулярности соприкасающихся торцовых поверхностей полумуфт к оси вала.  

Материал фланцевых полумуфт — сталь 40, 35Л, чугун СЧЗО (для муфт больших размеров).

Болты, поставленные без зазора, могут обеспечивать центровку валов. При постановке болтов с зазором центровка обеспечивается выступом, который воспринимает также все поперечные нагрузки. Центрирующий выступ усложняет монтаж и демонтаж соединения, так как при этом необходимо осевое смещение валов. Для обеспечения техники безопасности выступающие части болтов закрывают буртиками 4. В тех случаях, когда муфта имеет общее ограждение, буртики не делают. Расчет на прочность выполняют для шпоночных соединений и болтов (см. расчет призматических шпонок и расчет болтовых соединений нагруженных в плоскости стыка для болтов поставленных с зазором и без зазора). Установка болтов без зазора позволяет получить муфты меньших габаритов и поэтому применяется чаще.

Наибольшее распространение из этой группы муфт получила зубчатая муфта (рис.4.1). Она состоит из полумуфт 1 и 2 с наружными зубьями и разъемной обоймы 3 с двумя рядами внутренних зубьев эвольвентногопрофиля (рис. 16.3). Муфта компенсирует радиальные, осевые и угловые смещения валов за счет боковых зазоров в зацеплении и обточки зубьев по сфере. Компенсация несоосности валов сопровождается скольжением зубьев. Для повышения износостойкости зубья подвергают термообработке, а в муфту заливают смазку.

53 Муфты. Устройство нерасцепляемых компенсирующих муфт.

Компенсирующие муфты

Конструкции этих муфт несколько сложнее, но они допускают некоторые радиальные и угловые смещения осей валов. Основное назначение этих муфт состоит в том, чтобы компенсировать вредное влияние неправильного относительного положения соединяемых валов. Однако эти муфты чувствительны к перекосам. Кроме того, при перекосах валов вследствие трения в зубьях муфта нагружает валы изгибающим моментом примерно 10% от вращающего. Компенсирующие муфты делятся на жесткие подвижные и упругие (деформируемые).

Кулачково-дисковая муфта (рис.5) состоит из двух полумуфт 1 и 2 с диаметральными пазами на торцах и промежуточного плавающего диска 3 (рис.5, а) с взаимно перпендикулярными выступами. В собранной муфте выступы диска располагаются в пазах полумуфт (рис.5, б). Трущиеся поверхности периодически смазывают пластичной смазкой (один раз в смену). Кулачково-дисковая муфта применяется для соединения тихоходных валов (до 250 об/мин). Допустимые радиальные смещения валов — до 0,04 мм, угловое — до 30'. Недостаток этих муфт — повышенная чувствительность к перекосам валов. Эти муфты предназначены главным образом для компенсации относительно параллельного смещения осей валов. Теоретически, при любом смещении передаточное отношение между валами постоянное. При вращении ведущего вала без угловых ускорений ведомый вал также будет вращаться равномерно. Полумуфты и диски рекомендуется изготовлять из стали 45Л.

Зубчатая муфта (рис.6) состоит из четырех основных деталей: двух полумуфт 1 и 2 с наружными зубьями и двух обойм 3 и 4 с внутренними зубьями. Обоймы муфты соединены болтами 5. Через отверстие 6заливается масло (один раз в три месяца). Зубчатые муфты компенсируют радиальные, угловые и комбинированные смещения валов (углы между полумуфтами и обоймами не должны превышать 0,5°; d< 560 мм); находят широкое применение в машиностроении. Эти муфты надежны в работе, имеют малые габаритные размеры. Материал полумуфт и обойм — сталь 40 или 45Л. 

Упругая втулочно-пальцевая муфта (рис.7) по конструкции аналогична фланцевой муфте, вместо соединительных болтов у упругой муфты имеются стальные пальцы 1 на которые установлены эластичные (резиновые, кожаные и т. п.) втулки 2. Эластичные элементы позволяют компенсировать незначительные осевые (для малых муфт 1—5 мм; для больших муфт 2—15 мм), радиальные (0,2—0,6 мм) и угловые (до 30') смещения валов. Упругие втулочно-пальцевые муфты обладают хорошей эластичностью, высокой демпфирующей и электроизоляционной способностью, просты в изготовлении, надежны в работе. Находят широкое применение, особенно для соединения электродвигателей с исполнительными механизмами (машинами) при d< 150 мм. Материал полумуфт — сталь 35, 35Л или чугун СЧ25; пальцы изготовляют из стали 45.

54 Муфты. Устройство сцепных управляемых муфт. Выбор муфт

Сцепные муфты

Эти муфты предназначены для соединения и разъединения валов. Некоторые типы сцепных муфт позволяют это делать на ходу, без остановки электродвигателя. Сцепные муфты иногда называют управляемыми. По принципу работы различают кулачковые и фрикционные сцепные муфты.

Кулачковые муфты (см. рис.12) состоят из двух полумуфт 1 и 2, имеющих кулачки на торцовых поверхностях. Включение муфты осуществляется за счет полумуфты 2, которая может передвигаться вдоль вала по направляющей шпонке или по шлицам.

Во избежание повреждений кулачков включение муфты на ходу допускается без нагрузки при весьма малой разности угловых скоростей валов. Выключение допускается на ходу. Достоинство кулачковых муфт — простота конструкции и малые габаритные размеры; недостаток — невозможность, как правило, включения на ходу. Рекомендуемый материал кулачковых полумуфт — легированная сталь 20Х или 20ХН (с цементацией и закалкой).

Фрикционные муфты (рис.13) в отличие от кулачковых, допускают включение на ходу под нагрузкой. Фрикционные муфты передают вращающий момент за счет сил трения. Фрикционные муфты допускают плавное сцепление при любой скорости, что успешно используется, например, в конструкции автомобильного сцепления. Кроме того, фрикционная муфта не может передать через себя момент больший, чем момент сил трения, поскольку начинается проскальзывание контактирующих фрикционных элементов, поэтому фрикционные муфты являются эффективными неразрушающимися предохранителями для защиты машины от динамических перегрузок.

По конструкции фрикционные муфты делят на: дисковые, в которых трение происходит по торцевым поверхностям дисков (одно- и многодисковые) (см. рис.13, а); конусные, в которых рабочие поверхности имеют коническую форму (рис.13.10, б); цилиндрические имеющие цилиндрическую поверхность контакта (колодочные, ленточные и т.д.) (рис.13.10, в). Наибольшее распространение получили дисковые муфты.

Фрикционные муфты работают без смазочного материала (сухие муфты) и со смазочным материалом (масляные муфты). Последние применяют в ответственных конструкциях машин при передаче больших моментов. Смазывание уменьшает изнашивание рабочих поверхностей, но усложняет конструкцию муфты.

Материал для фрикционных муфт — конструкционные стали, чугун СЧ30. Фрикционные материалы (прессованную асбесто-проволочную ткань — ферродо, фрикционную пластмассу, порошковые материалы и др.) применяют в виде накладок.

55 Муфт Муфты выбирают по соответствующим таблицам (табл. 2 и 3) по Кр в зависимости от диаметра вала d (учитывают также максимальную угловую скорость ). Отдельные детали выбранной муфты проверяют на прочность.

 

Таблица 2. Коэффициенты безопасности Кб и режима работы Кр

Степень ответственности передачи

Кб

Поломка муфты вызывает остановку машины

1,0

Поломка муфты вызывает аварию машины

1,2

Поломка муфты вызывает аварию ряда машин

1,5

Поломка муфты может привести к человеческим жертвам

1,8

Условия работы машины

Кр

Работа спокойная

10

Работа неравномерная

1,1-1,3

Тяжелая работа с ударами

1,3-1,5

 

Таблица 3. Значения [р] и f для фрикционных муфт

Материал поверхностей трения

При смазывании

Всухую

[р], МПа

f

[р], МПа

f

Закаленная сталь по закаленной стали

0,6-0,8

0,06

Ферродо по стали и чугуну

0,2-0,3

0,3

Порошковый материал по закаленной стали

0,8

0,12

0,3

0,3

 

55. Устройство сцепных самоуправляемых муфт.

Самоуправляемые муфты

Эти муфты предназначены для автоматического разъединения валов в зависимости от изменения одного из следующих параметров: вращающего момента — предохранительные муфты, направления вращения —обгонные, и скорости вращения - центробежные.

Муфты свободного хода (обгонные) (рис.14) предназначены для передачи вращающего момента в одном направлении (например, для вращения втулки заднего колеса велосипеда). Ролики 3 муфты свободного хода за счет сил трения заклиниваются между поверхностями полумуфт 1 и 2

При уменьшении скорости вращения полумуфты 1 вследствие обгона ролики выкатываются в широкие участки вырезов, и муфта автоматически размыкается.

Муфты свободного хода работают бесшумно, допускают большую частоту включений.

В качестве материалов для муфт свободного хода рекомендуют применять стали ШХ15, 20Х, а также высокоуглеродистые инструментальные стали.

Центробежные муфты (рис.15) служат для автоматического включения (выключения) валов при заданных угловых скоростях.

Центробежная муфта состоит из ведущей и ведомой полумуфт 1 и 2, в пазы которых устанавливают фрикционные грузы — колодки 3.

 

При достижении ведущей полумуфтой заданной угловой скорости колодки 3, за счет центробежных сил, прижимаются к ведомой полумуфте, и муфта включается. В показанной на рис.15 конструкции любая из полумуфт (1 или 2) может быть ведущей. Передача вращающего момента осуществляется силами трения, значение которых пропорционально квадрату угловой скорости. Центробежная муфта допускает частые включения, обеспечивает плавное включение и имеет сравнительно небольшие габаритные размеры.


 

А также другие работы, которые могут Вас заинтересовать

82595. Система дошкольного образования 139.5 KB
  Система дошкольного образования Республики Беларусь обеспечивает реализацию конституционного права родителей на образование ребенка при первом же обращении их в органы образования. Каждой семье, каждому ребенку предоставляются возможности в получении качественного дошкольного образования...
82596. Основные течения философии ХIХ в. (позитивизм, марксизм, философия жизни, феноменология) 40.49 KB
  Философия XIX века включает различные философские течения и школы в том числе: романтизм и идеализм на подъеме немецкой философии противоположное движение позитивизм во Франции и Англии материализм Маркса и Фейербаха философия отдельных великих мыслителей Шопенгауэр Ницше Кьеркегор неокантианство...
82597. Щелочные полевые шпаты. Плагиоклазы. Бариевые полевые шпаты 99.5 KB
  Можно с уверенностью сказать что полевые шпаты являются наиболее изученными минералами и все важнейшие этапы развития минералогии и петрографии связаны с их исследованием. Полевые шпаты широко используются в керамической промышленности как наполнители лёгкие абразивы например в производстве...
82598. АНАЛІЗ БАЛАНСУ АПТЕКИ ТА ЙОГО СТРУКТУРИ 64.8 KB
  Самофінансування здійснюється за рахунок прибутку й амортизації. У процесi нагромадження обсяг прибутку піддається зменшенню за рахунок податків і різних платежів із прибутку. В остаточному підсумку залишається нерерозподілений прибуток.
82599. «Великая депрессия»: характер и причины возникновения. Новый курс Рузвельта 43.29 KB
  Важнейшей разделительной вехой в истории США XX в., как и в американской истории в целом, стал 1933 г. Краткое различие между двумя эпохами американской истории, разделенными этой датой, можно охарактеризовать следующим образом.
82600. КОРПОРАТИВНАЯ ЭТИКА. ЮРИДИЧЕСКАЯ И СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ФИРМЫ 46.54 KB
  Деловой этикет порядок поведения работников компании включающий систему регламентированных правил поведения в различных деловых ситуациях в том числе при деловой переписке деловом общении приеме на работу обращении к руководству и т.д.
82601. Основы управления персоналом 83.5 KB
  На основе внутренней мотивации люди действуют спокойнее быстрее добросовестнее тратят меньше сил лучше усваивают задания и знания. Добиться желаемого поведения можно двумя путями: подобрать человека с заданным уровнем внутренней мотивации или воспользоваться внешней.
82602. Роль кардинала Ришельє в історії Франції 144.5 KB
  Бажаючи досягти абсолютної влади, Ришельє вступає на шлях придушення будь-якого опору, обмеження привілеїв окремих міст і провінцій і, врешті-решт, знищення противників. Ришельє проводить цю політику від імені Людовика XIII. При цьому сходження Ришельє на політичний олімп було важким і болісним.
82603. Педагогічні умови розвитку ораторських здібностей 108.5 KB
  Основні аспекти розвитку ораторських здібностей молодших школярів. Педагогічні умови розвитку ораторських здібностей. Засоби практичного розвитку ораторських здібностей. Психологопедагогічна робота з розвитку ораторських здібностей...