21170

РАСЧЕТ ПОТРЕБЛЯЕМОЙ МОЩНОСТИ

Доклад

Информатика, кибернетика и программирование

1 РАСЧЕТ ПОТРЕБЛЯЕМОЙ МОЩНОСТИ Потребляемая мощность всей платы будет зависеть от потребляемой мощности отдельных элементов и количества микросхем.1 Потребляемая мощность микросхем Тип микросхемы Количество корпусов Мощность потребляемая одним корпусом мВт Мощность потребляемая всеми корпусами мВт MAX1106 1 445 445 AD232 1 696 696 где Pпотр потребляемая мощность всей платы P мощность одной микросхемы n количество микросхем. В итоге: Pпотр = 445 696 = 1141 мВт Таким образом потребляемая мощность платы составила всего около 1 Вт...

Русский

2013-08-02

185.5 KB

37 чел.

6. РАСЧЕТНАЯ ЧАСТЬ

6.1 РАСЧЕТ ПОТРЕБЛЯЕМОЙ МОЩНОСТИ

Потребляемая мощность всей платы будет зависеть от потребляемой мощности отдельных элементов, и количества микросхем. Для расчета потребляемой мощности составим таблицу.

Таблица 6.1 Потребляемая мощность микросхем

Тип микросхемы

Количество корпусов

Мощность, потребляемая одним корпусом, мВт

Мощность, потребляемая всеми корпусами, мВт

MAX1106

1

445

445

AD232

1

696

696

где Pпотр  потребляемая мощность всей платы, P  мощность одной микросхемы, n  количество микросхем. В итоге:

Pпотр = 445 + 696 = 1141 мВт

Таким образом, потребляемая мощность платы составила всего около 1 Вт

6.2 РАСЧЕТ ТЕПЛОВОГО РЕЖИМА РАБОТЫ

В качестве критерия оценки теплового режима работы устройства выберем плотность тока в проводниках печатной платы.

Для двусторонней печатной платы максимально допустимой считается плотность тока не более 20 А/мм2. Минимальное сечение проводника печатной платы составляет 0,08 мм2.

Найдем максимальный ток:

где Pmax  максимальная плотность тока

А

Таким образом, при токе нагрузке не более 1,6 А обеспечивается нормальный тепловой режим работы устройства и нет необходимости ставить дополнительные средства охлаждения для платы.

6.3. РАСЧЕТ ПЕЧАТНОГО МОНТАЖА

Печатные платы по плотности проводящего рисунка делятся на 3 класса. Первый класс характеризуется наименьшей плотностью проводящего рисунка; второй и третий класс характеризуется высокой и повышенной плотностями проводящего рисунка.

Таблица 5.2 Минимальные значения геометрических параметров печатных плат

Наименование параметра

Условное обозначение

Размеры проводящего рисунка, мм

Ширина проводника

T

0,25

Расстояние между проводниками, контактными площадками, проводником и контактной площадкой

S

0,25

Расстояние от края просверленного отверстия до края контактной площадки

bm

0,05

Отношение минимального диаметра металлизированного отверстия к толщине платы

J

0,400

Исходя из того, что минимальный диаметр вывода элемента, устанавливаемого на печатную плату, составляет 0,5 мм, следует, что с учетом допуска 0,2 мм минимальный диаметр отверстия на плате составит 0,7 мм. Следовательно, максимальная толщина платы будет равна  и составит 1,75 мм. Исходя из стандартного ряда и учитывая вышеприведенное соотношение, выберем толщину платы 1,5 мм.

Минимальный диаметр контактной площадки выбирают исходя из условия сохранения целостности контактной площадки при сверлении платы.

Минимальный эффективный диаметр контактной площадки равен:

,

где dmax  максимальный диаметр просверленного отверстия,

отв  погрешность расположения отверстия (мм), определяется как отв = О + Б и учитывает неточности сверления станка и погрешности базирования платы на станке.

КП  смещение центра контактной площадки (мм), зависит от точности расположения рисунка на шаблоне, погрешности экспонирования, погрешности расположения базовых отверстий и находится так:

КП = Ш + Э + 0,5 ( П + З ) = 0,095 мм,

bm  расстояние от края просверленного отверстия до края контактной площадки.

В итоге получаем:

Минимальный диаметр контактных площадок для двусторонних печатных плат рассчитываем по формуле:

,

где hf  толщина наращенной гальванической меди (0,05 мм)

hnM  толщина предварительно осажденной меди (0,006 мм)

hp  толщина металлического резиста (0,02 мм)

Рассчитаем минимальную ширину проводника:

,

Подставляя в эту формулу значения, получим tmin = 0.504 мм.

Найдем минимальные значения диаметров контактных площадок и ширины проводников на шаблоне:

Значения, полученные при hp = 0.02 мм указаны в таблице ниже.

Найдем максимальные значения диаметров контактных площадок и ширины проводников на шаблоне при экспонировании:

Значения, полученные при =0,05 мм указаны в таблице ниже.

Найдем максимальные значения диаметров контактных площадок и ширины проводников на шаблоне при экспонировании:

Таблица 6.3 Значения, полученные при = 0,02 мм

dMотв , мм

Dl min , мм

Dmin , мм

DШmin , мм

DШmax , мм

Dmax , мм

0,9

1,47

1,574

1,554

1,604

1,644

Таблица 6.4 Таблица предельных значений выбранных технологических параметров:

Наименование коэффициента

Обозначение

Величина

Толщина предварительно осажденной меди, мм

hnM

0.006

Толщина металлического резиста, мм

hp

0.020

Погрешность расположения отверстия относительно координатной сетки, обусловленная точностью сверлильного станка, мм

О

0,060

Погрешность базирования плат на сверлильном станке, мм

Б

0,020

Погрешность расположения относительно координатной сетки на фотошаблоне:

Контактной площадки, мм

Ш

0,05

Проводника, мм

Шt

0,03

Погрешность расположения печатных элементов при экспонировании на слое, мм

Э

0,020

Погрешность расположения контактной площадки на слое из-за нестабильности его линейных размеров, % от толщины

М

0-0,100

Погрешность расположения базовых отверстий на заготовке, мм

З

0,020

Погрешность положения базовых отверстий фотошаблона, мм

П

0,030

Погрешность диаметра отверстия после сверления, мм

0,020

Погрешность изготовления окна фотошаблона, мм

0,050

Погрешность диаметра контактной площадки фотокопии при экспонировании рисунка, мм

0,020

6.4 РАСЧЕТ НАДЕЖНОСТИ

При проектировании устройства сопряжения я стремился создать конструкцию, удовлетворяющую оптимальным соотношениям между заданными техническими характеристиками изделия, надежностью в заданных условиях эксплуатации и технологичностью конструкции.

На этапе эскизного проектирования проводятся ориентировочные расчеты, учитывающие влияние на надежность только количества и типов применяемых ЭРИ.

Расчет надежности заключается в определении показателей надежности ЭА по известным характеристикам надежности составляющих компонентов (ЭРИ, ПП, паяные соединения, соединитель) и условиям эксплуатации. Выполним расчет по внезапным отказам.

Исходные данные: Тср = 10000 ч заданная наработка на отказ. Система является нерезервированной.

Интенсивность отказа элементов с учетом условий эксплуатации ЭА

где   номинальная интенсивность отказов;

поправочный коэффициент на условия эксплуатации;

 и   поправочные коэффициенты в зависимости от воздействия механических факторов,  = 1,0;  = 1,0 (условия эксплуатации лабораторная ЭА);

  поправочный коэффициент в зависимости от воздействия влажности и температуры,  = 2 (для влажности 93 % при температуре +25 °С);

  поправочный коэффициент в зависимости от давления воздуха,  = 1 (нормальное давление). Тогда

Влияние температуры при расчете надежности учитывают, используя коэффициенты электрической нагрузки  и температуру блока, полученную в результате теплового расчета. поправочный коэффициент в зависимости от температуры T° и коэффициента нагрузки . Температуру примем общей для всех ЭРИ: T=40°С. Режим электрической нагрузки учитывается коэффициентом нагрузки.

Средние значения коэффициентов нагрузки :

для резисторов 0,6;

для конденсаторов 0,7;

для стабилитронов 0,5;

Тогда поправочный коэффициент  равен:

для резисторов 1;

для конденсаторов 0,6;

для стабилитронов 0,6;

Таблица 6.5. Интенсивность отказов по типам элементов

Элемент

Обозначение

Номинальная интенсивность отказа

Количество, шт.

Резистор:

C2-33N-0,125

0,087

1

Стабилитрон:

TL431ACZ

0,2

1

Конденсаторы:

K10-17

0,04

8

Печатная плата

0,7

1

Паяное соединение

0,01

39

Микросхемы:

MAX1106

MAX202

0,45

0,2

2

Интенсивность отказа конденсаторов

Интенсивность отказа резистора

Интенсивность отказа стабилитрона

Интенсивность отказа ПП                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

Интенсивность отказа паяного соединения

Интенсивность отказа микросхем

Интенсивность отказа системы

Среднее время наработки на отказ

ч

ч > ч

Надежность последовательных элементов в течение 10000 часов определяем по формуле:

Таким образом, расчетное среднее время наработки на отказ  превышает заданное время наработки на отказ ячейки .

Вывод: расчетная надежность ячейки удовлетворяет требованиям ТЗ. В случае, если расчетное время наработки на отказ меньше заданного в ТЗ, необходимо провести корректировку электрической принципиальной схемы или заменить типы ЭРИ, так как в противном случае произойдет отказ ЭА.

На предприятиях широко применяется ПО расчета надежности ЭА. Основными трудностями являются:

отсутствие в отечественных базах данных необходимых справочных данных для ЭРИ, выпускаемых зарубежными производителями, и наоборот;

значительное отставание новой версии ПО от обновления справочных данных о надежности новых ЭРИ, как отечественного, так и зарубежного производства.

В настоящее время расчет надежности проводится с помощью пакета программ АСРН РНИИ «Электронстандарт», подсистемы расчета надежности ЭРИ Reliability, входящей в состав САПР Cadence, которые имеют приведенные выше недостатки.


 

А также другие работы, которые могут Вас заинтересовать

22960. ПИТАННЯ ПРО ПРИРОДУ ЛЮДИНИ 68 KB
  Питання сутності людини це питання про те які глибинні людські якості визначають специфіку людини і проявляється зовні в її природі. Природи людини дуже суперечлива. Наші біологічні властивості це лише передумови виникнення людини а якщо не буде соціальних умов то людина не виникне.
22961. Виявлення сутності суспільства 63 KB
  Пізнання. Уявлення про знання і пізнання. Теорія пізнання її предмет і метод. Чуттєве і раціональне пізнання.
22962. Форми раціонального пізнання 62 KB
  На їх основі створюються більш складні форми наукового пізнання: 1. Умовивід це форма мислення за допомогою якої з раніше встановленого знання або судження виводяться нові знанні нові судження. Напрямком сучасної західної філософії для якої головна проблема це звязок пізнання і розуміння герменевтика.
22963. Наукове пізнання 46.5 KB
  Це сукупність способів принципів пізнання прийомів і процедур якими керуються в тій або іншій галузі науки. Ця дисципліна входить до якоїсь галузі науки. Для сучасної науки в цілому характерним є методологічний плюралізм тобто вона прагне використовувати будьякі принципи і прийоми дослідження в їхньому сполученні і взаємодії. Питання етики науки.
22964. Філософський зміст буття 40.5 KB
  Форми буття. Це питання стосовно буття. Буття як філософська категорія означає умоосягаєму одвічну першореальність яка обумовлює все існуюче и пронизує його.
22965. Поняття про світогляд 53 KB
  Особливості ставлення людини до світу 2. А ми пристосовуємось до світу іншим способом ми активно перетворюємо його прагення пристосувати світ до себе змінюючи його своєю діяльністю олюднення світу тобто робити світ більш придатним до людини. Все це означає пізнання людини пізнання світу пізнання одночасно. Висновок: людині щоб існувати треба перетворювати дійність але для цього це перетворювання відбувається в голові людини.
22966. Історичні типи світогляду: світоглядні погляди або уявлення певної епохи 52 KB
  Будьте уважні термін філософія змінювався. Вперше в первинному розумінні терміном філософія позначалась уся сукупність зань про все в перекладі любов до мудрості. Філософія це любов до мудрості це людська справа мудрими можуть будити лише боги а люди можуть тільки любити мудрість. Те що для буденної свідомості для релігії здається безсумнівною істиною те для філософії є вихідним пунктом роздуму над цим філософія думає.
22967. Форми філософського знання 51 KB
  Онтологія теорія буття теорія дійсності розглядаються основні принципи що визначають устрій світу. Ми робимо такий висновок що Філософія це найбільш пізній зрілий тип світогляду це система найбільш загальних теоретичних уявлень про взаємодію людини і світу. В людини є виначальні орієнтації визначаються особливостями її життєдіяльності і духовного світу. Ми змушені рахуватися з закономірностями зовнішнього світу.
22968. Найважливіші філософські питання 42 KB
  Теоретичний раціональний філософія наука. Духовний емоційноціннісний філософія релігія. Але філософія не є ні наукою ні релігією філософія це тип світогляду який повязаний з наукою і релігією не більше.