21180

Системи лінійних алгебраїчних рівнянь загального виду. Теорія Кронекера-Капеллі. Метод Гаусса

Реферат

Математика и математический анализ

Система називається сумісною якщо вона має хоча б один розв язок тобто хоча б один стовпець який перетворює рівняння 9.1 в тотожність і несумісною якщо вона не має розв язків. Система називається означеною якщо вона має один розв язок і неозначеною якщо вона має розв язків більше одного. Аналіз систем рівнянь повинен дати відповідь на два питання чи сумісна система тобто чи має вона розв язок і якщо сумісна то чи вона означена чи ні.

Украинкский

2013-08-02

237.5 KB

7 чел.

PAGE  72

Системи лінійних алгебраїчних рівнянь загального виду.

Теорія Кронекера-Капеллі. Метод Гаусса.

Розглянемо систему

, (9.1)

де А є матриця mn, яка називається матрицею системи, Х - стовпець n1 невідомих, В - стовпець m1 вільних членів рівнянь. Якщо B=0 система називається однорідною, в протилежному разі - неоднорідною.

Система називається сумісною, якщо вона має хоча б один розв"язок, тобто хоча б один стовпець , який перетворює рівняння (9.1) в тотожність, і несумісною, якщо вона не має розв"язків.

Система називається означеною, якщо вона має один розв"язок, і неозначеною, якщо вона має розв"язків більше одного.

Аналіз систем рівнянь повинен дати відповідь на два питання - чи сумісна система, тобто чи має вона розв"язок, і якщо сумісна, то чи вона означена, чи ні. Якщо система сумісна, то потрібен алгоритм находження розв"язків.

Відповідь на перші два питання дає теорія Кронекера-Капеллі (1883, 1892) (Kronecker Leopold, 1823-1891, Німмечина), (Capelli Alfred, 1855-1910, Італія). Для її формулювання складемо матрицю з матриці А і стовпця В: D=(AB). Вона називається розширеною матрицею системи.

 Теорема про необхідну і достатню умову сумісності системи: Для того, щоб система лінійних алгебраїчних рівнянь була сумісною, необхідно і достатньо щоб ранг матриці системи дорівнював рангу розширеної матриці, тобто r(A)=r(D).

1) Необхідність умови сумісності системи рівнянь.

Хай система має розв"язок Х=. Це означає, що підстановка розв"язку в (9.1) перетворює його в тотожність, тобто

0=В-АХ.  (9.2)

Розглянемо елементарні перетворення матриці D, які полягають в тому, що матрицю А множемо на стовпець X, тобто перший стовпець А домножають на , другий на , і т. д., і результат віднімають від стовпця В. Одержимо

. (9.3)

Тепер ми маємо, що з одного боку r(D)=r(C), а з другого r(C)=r(A), так як С має нульовий стовпець. Таким чином, одержуємо, що r(D)=r(A), якщо система має розв"язок.

2) Достатня умова.

Хай ранг матриць дорівнює k, r(A)=r(D)=k. Це означає, що в матриці D лінійно незалежні тільки k рядків, а останні є наслідком їх. Це ж саме відноситься і до рівнянь системи, з яких ми залишимо тільки лінійно незалежні

 (9.4)

причому kn.

 Розглянемо два випадки.

а) k=n, тобто число невідомих дорівнює числу рівнянь. Так як детермінант системи співпадає з базисним мінором матриці системи А, і причому , то, згідно з теоремою Крамера, система має розв”язок, причому єдиний,

 (9.5)

де  - допоміжний детермінант.

б) k<n. Залишимо зліва k невідомих, причому таких, щоб детермінант з коефіцієнтів при них був відмінний від нуля. Останні невідомі, які називають вільними, перенесемо управо:

 (9.6)

По відношенню до невідомих  знову маємо квадратну систему, яка має єдиний розв"язок, але цей розв"язок залежить від , яким можна придавати довільні значення:

 , i=1 ... k. (9.7)

 Таким чином, знайдені за цими формулами k невідомих  , а також довільно вибрані  і становлять розв"язок системи. Міняючи вільні невідомі будемо одержувати нові розв"язки системи, тобто їх нескінченно багато, і таким чином, система сумісна, але невизначена.

Приклад 1.

1) Складемо розширену матрицю систему і за допомогою елементарних перетворень над її рядками приведемо її до східчатого виду. При цьому відділимо стовпець з вільних членів системи і будемо мати паралельно також перетворення матриці системи А.

.

Звідси маємо, що r(D)=r(A)=3. Система сумісна і визначена.

2) З чотирьох рівнянь залишимо тільки перші три, які є лінійно незалежні Їм відповідає матриця системи

.

3) Обернена матриця дорівнює

.

4) Тепер знаходимо розв"язок системи

 

 Слід відзначити, що матриця  називається стійкою, якщо малим змінам в А відповідають малі зміни в . Тоді А називають добре обумовленою.

Приклад 2. Знайти розв”язок системи

 

1) Перетворимо розширену матрицю

,

звідки знаходимо, що r(D)=r(A)=2, тобто система сумісна, але невизначена.

2) Залишимо перші два рівняння і оголосимо  вільною невідомою

 

3) Детермінант системи .

Допоміжні детермінанти:

, ,

4) Розв"язок системи:

,  ,

або у виді рядка .

Якщо , то  .

Якщо , то  і т.д.

В першому прикладі розв"язок знайдено за допомогою оберненої матриці, у другому - за допомогою формул Крамера. З точки зору розрахунків, ці методи дуже трудомісткі, і звичайно використовують другі методи. Одним з найпоширеніших є метод Гаусса, на якому побудовано багато других методів. Розглянемо цей метод на прикладах.

1)

Приведемо розширену матрицю системи до східчатого виду

 

Так як перетворення рядків рівносильно перетворенню рівнянь системи, то з перетвореної матриці маємо

 

Хай  та  будуть вільними невідомими. Перенесемо їх направо

 

Тепер ідучи знизу вгору находимо невідомі  та :

, .

Розв"язок:

2) Розглянемо тепер розв”язок однорідної системи рівнянь

 

За допомогою метода Гаусса маємо

 

Виберемо  та  за вільні невідомі. Придаючи м значення 1, 0 та 0, 1 одержимо два ровв”язки

та , які є лінійно незалежні і утворюють так звану фундаментальну систему розв”яків. Так як однорідна система рівнянь є невизначена система, то вона має безліч розв”язків. Загальний вид розв”язку дорівнює , де  та  - довільні числа.

З других методів згадаємо метод простих ітерацій. Систему А=В перепишемо так

 

де  вектор-стовпець з вільних членів системи. Означимо С=Е-А. Тоді маємо

. (9.9)

Підставимо в правій стороні замість  деякий відомий вектор  (за який можна взяти , наприклад, вектор ) і одержимо першу ітерацію, або перший наближений розв"язок

. (9.10)

Далі можна продовжити

. (9.11)

Цей метод дає наближені розв"язки, які наближаються з ростом номера п до точного, якщо

, (9.12)

де  - елементи матриці С.

Відхилення від точного розв"язку задовільнює нерівності

  (9.13)

Звичайно процес закінчують при

 , (9.14)

де  є задана похибка. 

Контрольні питання.

1. Дайте означення сумісної і несумісної, означеної і неозначеної системи алгебраїчних лінійних рівнянь.

2. Сформулюйте теорему Кронекера-Капеллі.

3. Які невідомі називають “вільними”?

4. Наведіть алгоритм методу Гаусса.

5. Дайте поняття методу простих ітерацій.

PAGE  

PAGE  72


 

А также другие работы, которые могут Вас заинтересовать

22850. ВИЗНАЧЕННЯ КОЕФІЦІЄНТУ ТЕПЛОПРОВІДНОСТІ ПОВІТРЯ 182 KB
  Через довiльну коаксiальну поверхню радiуса y за одиницю часу пройде кiлькiсть теплоти 5 де l – довжина дротини.Розділивши в виразі 5 змінні одержимо 6 де – внутрішній радiус трубки – температура дослiджуваного газу повiтря бiля внутрішньої поверхнi трубки а – радiус дротини – температура дротини. Зі співвідношення 6 випливає що 7 Таким чином для визначення коефіцієнта теплопровідності треба знати кiлькiсть теплоти яка щосекунди...
22851. ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ТЕПЛОПРОВІДНОСТІ ТВЕРДИХ ТІЛ 111 KB
  Кількість теплоти Q що переноситься через поверхню площею S за час при градієнті температур визначається як: 1 де коефіцієнт теплопровідності середовища. Таким чином значення коефіцієнта теплопровідності матеріалу можна знайти безпосередньо якщо користуватись формулою 1. для визначення коефіцієнта теплопровідності твердих тіл.
22852. ПОБУДОВА ДІАГРАМИ СТАНУ СПЛАВІВ 49 KB
  Сплавом називають систему в твердому стані яку отримують сплавленням двох або більшої кількості компонент. Діаграми стану сплавів характеризують залежність температур фазових переходів зокрема плавлення і кристалізації від концентрації сплаву. Евтектика характеризується сталою температурою плавлення яка нижче температури плавлення компонент. Інтерметалічна сполука характеризується сталою температурою плавлення яка як правило вища за температуру плавлення компонент AuZn CdMg та ін.
22853. ВИЗНАЧЕННЯ ТЕПЛОЄМНІСТі МЕТАЛІВ МЕТОДОМ ОХОЛОДЖЕННЯ 626.5 KB
  Теплоємність термодинамічної системи – це кількість теплоти яку необхідно надати цій системі щоб збільшити її температуру на К. Розрізняють теплоємність питому молярну . Теплоємність термодинамічної системи С. Крім того за умовами визначення теплоємності розрізняють теплоємність що визначається за сталого об’єму та за сталого тиску .
22854. ВИЗНАЧЕННЯ ВІДНОШЕННЯ ТЕПЛОЄМНОСТЕЙ ПОВІТРЯ ЗА СТАЛОГО ТИСКУ І СТАЛОГО ОБ’ЄМУ 96 KB
  Знання  є важливим оскільки безпосереднє вимірювання CV становить значні експериментальні труднощі при V=const маса газу а отже його теплоємніcть завжди малі порівняно з відповідними величинами для калориметра і теплоємність CV звичайно обчислюють за формулою CV = CP  оскільки вимірювати CP значно зручніше. Відповідно до класичної теорії теплоємності ідеальних газів для одноатомного газу теплоємність CV = 3R 2 для газу що складається із двоатомних молекул між’ядерну відстань у яких при не дуже високих температурах можна...
22855. Спостереження броунівського руху і визначення числа Авогадро 89 KB
  1 взятому з роботи Жана Перрена 18701942 точками відмічені послідовні положення однієї і тієї ж частинки через кожні 30 секунд. Напрямок і величина рівнодійної сили ударів молекул змінюється з великою частотою внаслідок чого відбувається зміна напряму руху броунівської частинки. Відносно великі частинки під дією поштовхів набувають невеликих прискорень тому їх швидкість практично не змінюється і частинка лишається нерухомою. Незважаючи на випадковий характер величини і напрямку сили що діє на броунівську частинку хаотичний...
22856. Маркировка: понятие, назначение, виды, носители информации. Содержание маркировки. Требования к маркировке в НД 18.62 KB
  Текст является наиболее распространенным элементом, наиболее доступным для потребителей и других субъектов рыночных отношений. В тексте товарной маркировки могут быть использованы все формы товарной информации.
22857. Химическая, биологическая, микробиологическая безопасность продовольственных товаров. Нормирующие и подтверждающие соответствие документы 17.24 KB
  Безопасность товара - состояние товара в обычных условиях его использования, хранения, транспортировки и утилизации, при котором риск вреда жизни, здоровью и имуществу потребителя ограничен допустимым уровнем
22858. ВИВЧЕННЯ РОБОТИ ДЗЕРКАЛЬНОГО ГАЛЬВАНОМЕТРА 95.5 KB
  ВИВЧЕННЯ РОБОТИ ДЗЕРКАЛЬНОГО ГАЛЬВАНОМЕТРА Дзеркальний гальванометр – вимірювальний прилад магнітоелектричної системи. Вимірювання сили струму зводиться до реєстрації кутів повороту рамки рухомої системи гальванометра. Найбільш точними дзеркальними гальванометрами можна вимірювати силу струму з точністю до 1011 А і різницю потенціалів до 108 В. Рух рамки із струмом у полі постійного магніту з індукцією В можна описати таким рівнянням: 1 У цьому рівнянні  момент інерції рухомої системи гальванометра  момент сил що протидіють...