21180

Системи лінійних алгебраїчних рівнянь загального виду. Теорія Кронекера-Капеллі. Метод Гаусса

Реферат

Математика и математический анализ

Система називається сумісною якщо вона має хоча б один розв язок тобто хоча б один стовпець який перетворює рівняння 9.1 в тотожність і несумісною якщо вона не має розв язків. Система називається означеною якщо вона має один розв язок і неозначеною якщо вона має розв язків більше одного. Аналіз систем рівнянь повинен дати відповідь на два питання чи сумісна система тобто чи має вона розв язок і якщо сумісна то чи вона означена чи ні.

Украинкский

2013-08-02

237.5 KB

8 чел.

PAGE  72

Системи лінійних алгебраїчних рівнянь загального виду.

Теорія Кронекера-Капеллі. Метод Гаусса.

Розглянемо систему

, (9.1)

де А є матриця mn, яка називається матрицею системи, Х - стовпець n1 невідомих, В - стовпець m1 вільних членів рівнянь. Якщо B=0 система називається однорідною, в протилежному разі - неоднорідною.

Система називається сумісною, якщо вона має хоча б один розв"язок, тобто хоча б один стовпець , який перетворює рівняння (9.1) в тотожність, і несумісною, якщо вона не має розв"язків.

Система називається означеною, якщо вона має один розв"язок, і неозначеною, якщо вона має розв"язків більше одного.

Аналіз систем рівнянь повинен дати відповідь на два питання - чи сумісна система, тобто чи має вона розв"язок, і якщо сумісна, то чи вона означена, чи ні. Якщо система сумісна, то потрібен алгоритм находження розв"язків.

Відповідь на перші два питання дає теорія Кронекера-Капеллі (1883, 1892) (Kronecker Leopold, 1823-1891, Німмечина), (Capelli Alfred, 1855-1910, Італія). Для її формулювання складемо матрицю з матриці А і стовпця В: D=(AB). Вона називається розширеною матрицею системи.

 Теорема про необхідну і достатню умову сумісності системи: Для того, щоб система лінійних алгебраїчних рівнянь була сумісною, необхідно і достатньо щоб ранг матриці системи дорівнював рангу розширеної матриці, тобто r(A)=r(D).

1) Необхідність умови сумісності системи рівнянь.

Хай система має розв"язок Х=. Це означає, що підстановка розв"язку в (9.1) перетворює його в тотожність, тобто

0=В-АХ.  (9.2)

Розглянемо елементарні перетворення матриці D, які полягають в тому, що матрицю А множемо на стовпець X, тобто перший стовпець А домножають на , другий на , і т. д., і результат віднімають від стовпця В. Одержимо

. (9.3)

Тепер ми маємо, що з одного боку r(D)=r(C), а з другого r(C)=r(A), так як С має нульовий стовпець. Таким чином, одержуємо, що r(D)=r(A), якщо система має розв"язок.

2) Достатня умова.

Хай ранг матриць дорівнює k, r(A)=r(D)=k. Це означає, що в матриці D лінійно незалежні тільки k рядків, а останні є наслідком їх. Це ж саме відноситься і до рівнянь системи, з яких ми залишимо тільки лінійно незалежні

 (9.4)

причому kn.

 Розглянемо два випадки.

а) k=n, тобто число невідомих дорівнює числу рівнянь. Так як детермінант системи співпадає з базисним мінором матриці системи А, і причому , то, згідно з теоремою Крамера, система має розв”язок, причому єдиний,

 (9.5)

де  - допоміжний детермінант.

б) k<n. Залишимо зліва k невідомих, причому таких, щоб детермінант з коефіцієнтів при них був відмінний від нуля. Останні невідомі, які називають вільними, перенесемо управо:

 (9.6)

По відношенню до невідомих  знову маємо квадратну систему, яка має єдиний розв"язок, але цей розв"язок залежить від , яким можна придавати довільні значення:

 , i=1 ... k. (9.7)

 Таким чином, знайдені за цими формулами k невідомих  , а також довільно вибрані  і становлять розв"язок системи. Міняючи вільні невідомі будемо одержувати нові розв"язки системи, тобто їх нескінченно багато, і таким чином, система сумісна, але невизначена.

Приклад 1.

1) Складемо розширену матрицю систему і за допомогою елементарних перетворень над її рядками приведемо її до східчатого виду. При цьому відділимо стовпець з вільних членів системи і будемо мати паралельно також перетворення матриці системи А.

.

Звідси маємо, що r(D)=r(A)=3. Система сумісна і визначена.

2) З чотирьох рівнянь залишимо тільки перші три, які є лінійно незалежні Їм відповідає матриця системи

.

3) Обернена матриця дорівнює

.

4) Тепер знаходимо розв"язок системи

 

 Слід відзначити, що матриця  називається стійкою, якщо малим змінам в А відповідають малі зміни в . Тоді А називають добре обумовленою.

Приклад 2. Знайти розв”язок системи

 

1) Перетворимо розширену матрицю

,

звідки знаходимо, що r(D)=r(A)=2, тобто система сумісна, але невизначена.

2) Залишимо перші два рівняння і оголосимо  вільною невідомою

 

3) Детермінант системи .

Допоміжні детермінанти:

, ,

4) Розв"язок системи:

,  ,

або у виді рядка .

Якщо , то  .

Якщо , то  і т.д.

В першому прикладі розв"язок знайдено за допомогою оберненої матриці, у другому - за допомогою формул Крамера. З точки зору розрахунків, ці методи дуже трудомісткі, і звичайно використовують другі методи. Одним з найпоширеніших є метод Гаусса, на якому побудовано багато других методів. Розглянемо цей метод на прикладах.

1)

Приведемо розширену матрицю системи до східчатого виду

 

Так як перетворення рядків рівносильно перетворенню рівнянь системи, то з перетвореної матриці маємо

 

Хай  та  будуть вільними невідомими. Перенесемо їх направо

 

Тепер ідучи знизу вгору находимо невідомі  та :

, .

Розв"язок:

2) Розглянемо тепер розв”язок однорідної системи рівнянь

 

За допомогою метода Гаусса маємо

 

Виберемо  та  за вільні невідомі. Придаючи м значення 1, 0 та 0, 1 одержимо два ровв”язки

та , які є лінійно незалежні і утворюють так звану фундаментальну систему розв”яків. Так як однорідна система рівнянь є невизначена система, то вона має безліч розв”язків. Загальний вид розв”язку дорівнює , де  та  - довільні числа.

З других методів згадаємо метод простих ітерацій. Систему А=В перепишемо так

 

де  вектор-стовпець з вільних членів системи. Означимо С=Е-А. Тоді маємо

. (9.9)

Підставимо в правій стороні замість  деякий відомий вектор  (за який можна взяти , наприклад, вектор ) і одержимо першу ітерацію, або перший наближений розв"язок

. (9.10)

Далі можна продовжити

. (9.11)

Цей метод дає наближені розв"язки, які наближаються з ростом номера п до точного, якщо

, (9.12)

де  - елементи матриці С.

Відхилення від точного розв"язку задовільнює нерівності

  (9.13)

Звичайно процес закінчують при

 , (9.14)

де  є задана похибка. 

Контрольні питання.

1. Дайте означення сумісної і несумісної, означеної і неозначеної системи алгебраїчних лінійних рівнянь.

2. Сформулюйте теорему Кронекера-Капеллі.

3. Які невідомі називають “вільними”?

4. Наведіть алгоритм методу Гаусса.

5. Дайте поняття методу простих ітерацій.

PAGE  

PAGE  72


 

А также другие работы, которые могут Вас заинтересовать

13919. Права ребенка 70 KB
  Цель: 1. Обобщить знания учащихся об основных правах ребенка. 2. Развести понятия €œправо€ €œправа€ €œобязанности€ показать единство прав и обязанностей для детейподростков. 3. Повышать социальноправовую компетентность старшеклассников. 4. Воспитыват
13920. Защита прав потреителей 45 KB
  Цели урока: формировать у школьников рациональное потребительское поведение; развать интуицию самостоятельность гибкость мышления; научить отстаивать права потребителя; показать знания основ экономической теории; повторить статьи Закона €œО з...
13921. Технические средства мультимедиа 226 KB
  Тема урока: Технические средства мультимедиа. Цели урока: способствовать формированию у обучающихся устойчивых представлений по основным понятиям темы. развивать навыки работы учащихся на компьютере. Оборудование: мультимедийная презентация интерактивная ...
13922. Основы работы с CorelDRAW. Графические примитивы 328.5 KB
  сновы работы с CorelDRAW. Графические примитивы 1. Растровая и векторная графика. Понятие объекта в CorelDRAW CorelDRAW Х4 в настоящее время один из самых мощных редакторов векторной графики который широко используется в издательской деятельности полиграфии и рекл
13923. Клод Дебюсси «В лодке» 3 MB
  Урок 1. Клод Дебюсси В лодке Реквизит: Все музыкальные файлы урока. Все распечатанные материалы урока. Детский музыкальный инструмент металлофон. Таз для воды и бумажные кораблики. Краски кисточка для раскрашивания. Клей ножницы для аппли
13924. Семьи Японии 140.7 KB
  Семьи Японии. Япония страна загадочная. Хранение традиций воспитание собственного достоинства склонность к созерцанию непонятная европейцу манят и завораживают. История страны не могла не отразиться на жизни японцев и на том как они строят семейные отношения. В жи...
13925. GLAD TO MEET YOU 472.5 KB
  GLAD TO MEET YOU Unit 1 1A Meeting people. Read the dialogues and guess who is speaking and where they are. Good afternoon Miss Bright Good afternoon Mr. Johnson Hows life No complaints. Thank you. How are things with you Nothing to boast of. I have loads of work again. Sorry to hear that Hi Mike Hey Jack Nice tracksuit Oh thank you. I jog in it every morning. H...
13926. Труд: право или обязанность? Трудовые права несовершеннолетних 37 KB
  Тема урока: Труд: право или обязанность Трудовые права несовершеннолетних. Учебное пособие: Е.Н. Салыгин Основы правоведения Издательский дом Новый учебник М. 2006. Материалы и оборудование: доска наглядное пособие нормативноправовые акты: Конституци
13927. Реализация и защита своих прав. Каждый имеет право 54.5 KB
  Цель: повышение социально правовой компетентности старшеклассников посредством обучения практическим навыкам реализации и защиты своих прав. Ожидаемый результат в субъекте: осознание социальной ценности права как средства защиты личности и общества; усвоен