21182

Перехід до нового базису. Орієнтація базиса. Скалярний добуток. Евклідовий простір

Реферат

Математика и математический анализ

Орієнтація базиса. Перехід до нового базиса. Хай в пвимірному лінійному просторі вибрані два базиса: та .2 Таким же чином і кожний вектор базиса можна розкласти по базису : .

Украинкский

2013-08-02

361.5 KB

22 чел.

Перехід до нового базису. Орієнтація базиса. Скалярний добуток. Евклідовий простір

Базис геометричних векторів. Розглянемо в лінійному просторі геометричних векторів деякий базис , за який можна взяти будь-які три некомпланарні вектори, які не лежать в одній площині. Тоді будь-який вектор можна записати у вигляді розкладу по цьому базису, наприклад, , . Таким чином, кожному вектору відповідає рядок із його координат в даному базисі, наприклад: , . Оскільки всі лінійні простори одинакової розмірності ізоморфні, то звідси випливають правила дій над координатами вектора, а саме: а) при множенні вектора на число, його координати домножаються на це число; б) при додаванні векторів їх координати теж додаються. Дійсно:

;

  (11.1)

В цих перетвореннях використані правила множення рядків на число та додавання рядків.

Найчастіше в просторі геометричних векторів за базис беруть вектори довжиною одиниця, які спрямовані по осях декартової прямокутної системи координат (Рис. 11.1).

Рис.11.1. Репер

Їх стандартне позначення: . Ці вектори називають ортами, а вся трійка в цілому називається репером.

Якщо взяти другий базис, то координати вектора міняються. Очевидно, нові координати пов”язані із старими певними відношеннями. Розглянемо це питання в загальному вигляді для п-вимірного простору.

Перехід до нового базиса. Хай в п-вимірному лінійному просторі вибрані два базиса:  та . Довільний елемент  можна розкласти по кожному з цих базисів:

 

. (11.2)

Таким же чином і кожний вектор базиса  можна розкласти по базису :

 . (11.3)

Складемо із коефіцієнтів  матрицю і транспонуємо її. Одержимо так звану матрицю переходу від базиса  до базиса :

. (11.4)

Так як вектори  лінійно незалежні (чому?), то стовпці цієї матриці лінійно незалежні. Значить її ранг дорівнює п і тому . Значить ця матриця невироджена і має обернену матрицю.

Знайдемо формули, які зв”язують координати вектора в різних базисах. Очевидно

. (11.5)

Підставимо сюди розкладення векторів  .

. (11.6)

Зліва і справа одержали розкладення по одному і тому ж базису. Отже

. (11.7)

Це і є формула перетворення координат вектора при переході від базиса  до базиса . В матричному виді цю формулу можна переписати так

, (11.8)

де та  - стовпці координат, а  - матриця переходу. З цього ж рівняння маємо

. (11.9)

До речі, елементи оберненої матриці  є коефіцієнти розкладення базисних векторів  по базису . Дійсно, розглянемо систему рівнянь

  

 (11.10)

 

Домножимо ці рівняння на алгебраїчні доповнення елементів k - го рядка детермінанта detP і складемо їх. Враховуючи властивості детермінантів будемо мати

 (11.11)

Звідси

, (11.12)

де  - елементи оберненої матриці.

Орієнтація базиса. Будемо вважати, що в кожному вибраному базисі порядок розташування елементів строго заданий, тобто, якщо в даному наборі базисних елементів поміняти місцями хоча б два елемента, то одержимо новий базис. Другими словами набори базисних елементів є упорядковані підмножини елементів. Тоді всі базиси можна розділити на два класи.

Якщо detP>0, де Р матриця переходу від одного базиса до іншого, то такі базиси будемо називати однаково орієнтованими. Якщо detP<0, то протилежно орієнтованими. Звичайно, базиси одного класу називають право орієнтованими, а другого - ліво орієнтованими.

Розглянемо два репера:  та . Матриця переходу знаходиться з розкладень:

 

 

 

  ,

тобто це базиси різної орієнтації. Перший називають правим репером, а другий - лівим. Це пов”язано з правилом правої руки. Якщо вектор  направити по середньому пальцю правої руки,  - по великому пальцю, а  - по вказівному, то найкоротший поворот від першого до другого, від другого до третього і від третього до першого буде проти годинникової стрілки (Рис.11.2).

Рис.11.2 Правостороння орієнтація базиса

Для другого базису таке ж правило справедливе відповідно лівої руки, і обертання за годинниковою стрілкою (Рис.11.3),

Рис.11.3 Лівостороння орієнтація базиса

тобто, якщо  направити по середньому,  - по великому,  - по вказівному пальцю лівої руки, то найкоротший поворот буде за годинниковою стрілкою.

Кажуть, що вектори , ,  утворюють праву трійку, а вектори , ,  - ліву.

Скалярний добуток елементів лінійного простору. Евклідовий простір. В лінійному просторі можна ввести так званий скалярний (внутрішній) добуток двох елементів, якщо кожній парі елементів поставити у відповідність число. Це позначають так: . Ця відповідність повинна підкорятись правилам:

1)

2)

3)   (11.13)

4) .

Наприклад, для арифметичного простору введемо скалярний добуток як суму добутків елементів рядків, а саме: для , та , скалярний добуток можна визначити як

. (11.14)

Неважко перевірити, що всі чотири правила (11.13) виконуються, тобто скалярний добуток введено вірно.

Другий приклад - простір геометричних векторів. Введемо скалярний добуток, як

, (11.15)

де  - кут між векторами  та . Також неважко показати, що правила (11.13) виконуються. Розглянемо, наприклад, друге. Для його доказу замітимо, що добуток можна записати і по іншому. а саме

, (11.16)

де  - є проекція вектора  на напрямок вектора  (Рис. 11.4). Проекція виражається скалярним дійсним числом, яке є додатнім коли напрям проекції  співпадає з напрямком осі , і від”ємним, коли напрям проекції протилежний напрямку осі .

Рис.11.4 Проекція вектора на напрямок

Тоді, як видно з рисунка Рис.11.5:

Рис.11.5 До правил скалярного добутку

 

=. (11.17)

Поняття скалярного добутку і назва були введені У.Гамільтоном у 1853 р. Термін внутрішній добуток застосовував Г.Грассман (1864) (Grassmann H., 1809-1877, Німеччина). Позначення  вперше зустрічається у О.Хенрічі (1903),  - у Дж. Гіббса у 1881 р. (Gibbs J.W., 1839-1903, Америка). Лінійний простір, у якому введено скалярний добуток елементів, називається евклідовим простором.

У подальшому буде використовуватись нерівність Коші-Буняковського (Коші довів нерівність для одного випадку у 1821 р., Буняковський (Буняковський В.Я., 1804 1889, Росія) у 1859 р.) :

. (11.18)

Доведення: Згідно четвертого правила скалярного добутку

. (11.19)

Розкриємо добуток зліва, використовуючи перші три правила:

. (11.20)

Його можна розглядати як квадратичний тричлен відносно . Так як , то квадратичний тричлен буде задовольняти нерівність тільки тоді, коли його дискримінант від”ємний або дорівнює нулю

. (11.21)

Звідси і випливає нерівність Коші-Буняковського.

Для геометричних векторів ця нерівність очевидна:

, (11.22)

тому, що .

Якщо в евклідовому просторі вибрано базис, то скалярний добуток можна записати через координати в цьому базисі. Хай

. (11.23)

Тоді

 = = , (11.24)

де .

Ця сума має  доданків.

Якщо в (11.24) , то маємо

, (11.25)

Така сума називається квадратичною формою.

Контрольні питання.

1. Що таке матриця переходу від одного базиса до іншого?

2. Запишіть координати елемента лінійного простору в новому базисі?

3. Дайте означення орієнтації базиса.

4. Дайте означення скалярного добутку елементів лінійного простору.

5. Дайте означення скалярного добутку геометричних векторів.

6. Дайте означення проекції вектора на заданий напрямок.

7. Сформулюйте нерівність Коші-Буняковського.

8. Дайте запис скалярного добутку через координати елементів в довільному базисі.

PAGE  88


 

А также другие работы, которые могут Вас заинтересовать

44842. Экологические риски. Экологическое страхование 36.5 KB
  Категории риска: приемлемый риск уровень риска с которым общество в целом готово мириться ради получения определенных благ или выгод в результате своей деятельность. Экологический риск – это возможность возникновения неблагоприятных экологических последствий вызванных опасными природными или антропогенными в том числе техногенными факторами – факторами риска. Факторы экологического риска – это природные и антропогенные воздействия которые способны вызвать нежелательные опасные изменения состояния окружающей среды и здоровья человека:...
44843. Оценка воздействия хозяйственной деятельности на окружающую среду 41 KB
  Оценка воздействия на окружающую среду предназначена для выявления характера интенсивности и степени опасности влияния любого вида планируемой хозяйственной деятельности на состояние окружающей среды и здоровье населения. В процедуре ОВОС участвуют заказчик исполнитель работ по оценке воздействия и общественность. Исполнитель физ или юр лицо осуществляющее проведение оценки воздействия на окружающую среду которому заказчик предоставил право на проведение работ по оценке воздействия на ОС.
44844. Охраняемые природные территории 38 KB
  Общая площадь ООПТ федго и регго значения состт свыше 56 млн. ООПТ регго значения зант площадь равную 3 млн. га 536 от площади ООПТ в нашем регионе.В РФ создано более 13 тысяч ООПТ федго регго и месго значения.
44845. Характерные особенности метода и методики экономического анализа. Классификация методов и приемов экономического анализа 41 KB
  Характерные особенности метода и методики экономического анализа. Классификация методов и приемов экономического анализа Метод – это способ подхода к изучению познанию и преобразованию реальной действительности. Методология – это учение о принципах построения и формах научного познания. Методология ЭА – более общее чем метод понятие; вбирающее в себя помимо метода знание о формировании экономических явлений их структурных связях и путях дальнейшего развития.
44847. Оболочка bash 39.55 KB
  Если в командной строке стоит commnd1 commnd2 то commnd2 выполняется в том и только в том случае если статус выхода из команды commnd1 равен нулю что говорит об успешном ее завершении. Аналогично если командная строка имеет вид commnd1 commnd2 то команда commnd2 выполняется тогда и только тогда когда статус выхода из команды commnd1 отличен от нуля. Итак первый этап поиск кода команды. Команды бывают встроенные те код которых включен в код самой оболочки и внешние код которых расположен в отдельном файле на диске.
44848. Цели обучения РЯ в школе. Формирования лингвистической, языковой и коммуникативной компетенции в процессе обучения РЯ 14.38 KB
  Цели того или иного школьного предмета в том числе русского языка определяются следующими факторами: социальным заказом; уровнем развития соответствующей науки в данном случае лингвистики; уровнем развития педагогики детской психологии и самой методики преподавания русского языка. Лингвистическая наука достаточно полно описала все уровни русского языка и все функциональностилистические разновидности русской речи. Это позволило поставить задачу изучения языка во всех его основных проявлениях. Методика преподавания русского языка...
44849. Культура речи как качество 15.93 KB
  Центральным понятием нормативного аспекта является понятие языковой нормы. Нормы литературного языка включают единнообразную систему образцов общепринятые элементы языка обусловленные правилами исполнения речевых средств исторически принятые в языковом коллективе. Нормы отражают процесс. Признаки языковой нормы.