21187

Власні числа та власні вектори оператора. Самоспряжені оператори

Реферат

Математика и математический анализ

1 то він називається власним вектором оператора а число його власним числом. Таким чином дія оператора на власний вектор дає той же вектор помножений на власне число. Це алгебраїчне рівняння степені називається характеристичним рівнянням оператора .

Украинкский

2013-08-02

822 KB

7 чел.

Власні числа та власні вектори оператора. Самоспряжені оператори.

Власні числа та власні вектори. Якщо існує такий ненульовий елемент , що

, (17.1)

то він називається власним вектором оператора , а число  - його власним числом. Таким чином, дія оператора на власний вектор дає той же вектор, помножений на власне число. Щоб знайти ці вектори і числа перепишемо (17.1) у виді , або

. (17.2)

Згідно теореми про обернений оператор такому рівнянню буде задовольняти ненульовий вектор  тоді і тільки тоді, коли оператор  не буде мати оберненого. З цього витікає, що і його матриця не буде мати оберненої, критерієм чого є рівність нулю її детермінанта

. (17.3)

Таким чином, власне число повинно бути корнем рівняння (17.3). Це алгебраїчне рівняння степені  називається характеристичним рівнянням оператора . Згідно основної теореми алгебри алгебраїчне рівняння степені  має  коренів , серед яких можуть бути кратні корені, а також і комплексні корені.

Теорема. Характеристичні рівняння для одного і того ж оператора в різних базисах еквівалентні. Дійсно, хай матриці оператора  в двох різних базисах будуть відповідно  і , і хай  є матриця переходу від одного базиса до другого. Тоді, згідно правил перетворення матриці оператора, маємо

 (17.4)

Для кожного власного числа  рівняння (17.2) визначає власний вектор

. (17.5)

Приклади. 1) Знайти власні вектори і числа оператора, матриця якого в деякому базисі має вид

. Маємо .

Характеристичне рівняння

.

Корені рівняння будуть .

Тепер знайдемо власні вектори. Для  власний вектор буде розв”язком рівняння

 

Звідси маємо

.

де  - довільне число.

Для числа  рівняння для векторів буде мати вид

, або

Звідси маємо

,

де  - довільне число. Власний вектор для числа  відрізнятиметься знаком перед уявною одиницею.

2) Знайти власні числа і вектори оператора проектування на площину. Його матриця

.

Характеристичне рівняння

 

має корні , . Власні вектори

 

3) Знайти власні числа і вектори оператора повороту на кут  навколо осі . Матриця оператора

.

Характеристичне рівняння

 

має корні . Власні вектори

 

Власні вектори і числа оператора являються дуже важливими його характеристиками. Особливе значення придають цьому слідуючі дві теореми.

Теорема 1. Власні вектори оператори, які відповідають різним власним числам є лінійно незалежні.

Доведення. Хай оператор  має власні числа  і відповідні їм власні вектори . Хай всі власні числа різні, . Використаємо метод математичної індукції. Один вектор завжди лінійно незалежний. Хай тепер  лінійно незалежні. Доведемо, що і  лінійно незалежні. Для цього припустимо, що це не так, тобто припустимо, що існують такі числа , серед яких є і ненульові, що

. (17.6)

Подіємо спочатку на (17.6) оператором

. (17.7)

Тепер помножимо (17.6) на  і віднімемо від (17.7)

.

Так як всі , , то із лінійної незалежності векторів  витікає, що . Але тоді із (17.6) слідує, що і , тобто рівняння (17.6) можливе тільки в тому разі, коли всі коефацієнти дорівнюють нулю, а це значить всі вектори лінійно незалежні.

 Теорема 2. Матриця оператора в базисі з власних векторів має діагональний вид.

Доведення. Хай набір власних векторів  оператора  достатній для того, щоб утворювати базис. Знайдемо матрицю оператора. Для цього подіємо на кожний базисний вектор, який до того ж є і власним, оператором

 (17.9)

Звідси маємо діагональну матрицю

, (17.10)

по діагоналі якої стоять власні числа оператора.

Висновок. Якщо оператор  має  різних власних чисел, то в деякому базисі, а саме в базисі з власних векторів, матриця цього оператора має діагональний вид.

 Самоспряжені оператори. Розглянемо евклідовий простір (лінійний простір, в якому введено скалярний добуток). Два оператора  і  називаються спряженими, якщо

, (17.11)

де  і  довільні елементи простору. Спряжений оператор позначиють так: . З визначення слідують властивості:

1) ,

2) ,

3) , (17.12)

4) ,

5) .

Доведемо останню властивість. Маємо, згідно (17.11), . Застосовуючи (17.11) послідовно для кожного оператора, одержимо другий результат. . Прирівнюючи праві частини одержимо властивісь 5).

Знайдемо тепер матрицю спряженого оператора в ортонормованому базисі. Хай дія операторів на вектори запишеться як

, (17.13)

і  . (17.14)

Тоді для скалярних добутків одержимо

. (17.15)

. (17.16)

Прирівнюючи (17.15) і (17.16) згідно (17.11) маємо

, (17.17)

тобто матриця спряженого оператора  є транспонована матриця оператора . Звідси, зокрема витікає, що .

Оператор називається самоспряженим, якщо , тобто якщо

. (17.18)

Приклади. 1) Довести, що оператор , де , самоспряжений. Перевіримо безпосередньо:

.

.

2) Хай у просторі многочленів не вище другої степені, елементи якого мають вид  скалярний добуток означено, як , де .

а) Дія оператора - зміна знака у аргумента: . Тоді  

.

.

Оператор самоспряжений.

б) Довести, що оператор  теж самоспряжений.

3) Оператор проектування на площину хОу. У базисі  його матриця

. Тоді  і

;

.

Отже оператор  самоспряжений.

Матриця самоспряженого оператора симетрична, , що зразу ж витікає з (17.17). В ортонормованому бозисі скалярний добуток

. (17.19)

має вид квадратичної форми, де коефіцієнти  є елементи матриці оператора . Якщо матриця має діагональний вид, то квадратична форма приймає канонічний вид

, (17.20)

де  - діагональні елементи матриці оператора .

Очевидно, що в базисі з власних векторів оператора квадратична форма буде мати канонічній вид, причому коефіцієнтами будуть власні числа оператора.

Для самоспряжених операторів дуже велике значення має

Теорема: самоспряжений оператор в -вимірному просторі має  дійсних власних чисел, яким відповідають взаємно ортогональні власні вектори.

Дія самоспряженого оператора зводиться до розтягування  або стискання вздовж напрямків, які задаються власними векторами. Дійсно, хай власні вектори  утворюють базис. Тоді розкладення вектора х в цьому базисі буде мати вид .

Дія оператора дасть результат

, (17.21)

звідки видно, що координати образу вектора  змінились у  раз.

Приклад: Хай оператор  в деякому базисі тривимірного простору породжає квадратичну форму

.

Знайти базис, у якому квадратична форма буде мати канонічний вид і виписати її.

Для того, щоб виписати матрицю оператора, треба прийняти до уваги, що матриця самоспряженого оператора симетрична, отже коефіцієнти у квадратичній формі при перехресних добутках координат треба брати вдвічі меншими, бо

. Таким чином матриця оператора має вид . Характеристичне рівняння

 .

Власні числа: , . Власні вектори:

1) .   нормований вектор .

2) .  нормований вектор .

3), нормований вектор .

Так як всі власні числа різні, то вектори  лінійно незалежні і утворюють базис. Легко перевірити, що він ортонормований. Матриця переходу до цього базису має вид

.

Матриця оператора в новому базисі

 

має діагональний вид, де на діагоналі стоять власні числа. Квадратична форма в новому базисі має канонічний вид

,

де координати в старому і новому базисі зв”язані формулами

 

 

 

Контрольні питання.

1. Дайте означення власних векторів та власних чисел оператора.

2. Яке рівняння називається характеристичним?

3. Доведіть теорему про лінійно незалежні власні вектори оператора.

4. Які оператори називаються спряженими?

5. Доведіть теорему про діагональність матриці оператора.

6. Сформулюйте теорему про власні числа самоспряженого оператора.

PAGE  44


 

А также другие работы, которые могут Вас заинтересовать

41129. Проекции точки 196.5 KB
  Плоскости проекции. Проекции разделяются на центральные и параллельные. Пусть заданы в пространстве точка S – центр проекции и плоскость П1 – плоскость проекции.
41130. Основные задачи в области электротехники 188.5 KB
  Определение связи между токами напряжениями параметрами заданной цепи и теми величинами которые определяют работу рассматриваемой установки например: к. падение напряжения величина тока к. Электрической цепью называется совокупность устройств предназначенных для прохождения электрического тока. Различают источники напряжения и источники тока.
41131. ПРЕДМЕТ ЛОГИСТИКИ И ФАКТОРЫ ЕЁ РАЗВИТИЯ 89.5 KB
  Понятие логистики история ее появления и развития.Факторы и уровни развития логистики.Цель задания и функции логистики.Термин «Л» до недавних пор был известен только узкому кругу специалистов, а сегодня он имеет все более широкое распространение. Основная причина этого заключается в том, что понятие «Л» начало использоваться в экономике
41132. Защита операционных систем 533.5 KB
  Обеспечение безопасности хранения данных в ОС Microsoft Технология теневого копирования данных Архивация данных Создание отказоустойчивых томов для хранения данных
41133. ПОТРЕБИТЕЛЬ В СИСТЕМЕ МАРКЕТИНГА 1.18 MB
  В результате исследования нами выделены наименованы и описаны три основных типа моделей индивидуального потребления:рациональные модели утилитарная конъюнктурная нормативная; иррациональные модели мотивационная идентификационная; смешанные модели модель неформальной экономики. особенно характерными и присущими современному российскому обществу на текущий момент являются два последних типа: 1 идентификационная модель – представлена совокупностью субмоделей описывающих выбор покупателя как многоаспектное явление когда...
41134. Особливості складання фінансової звітності за МСФЗ 112 KB
  Назначение и состав финансовой отчетности Общие требования к финансовой отчетности изложены в Концептуальной основе МСФО и МСБУ Представление финансовых отчетов. Концептуальная основа МСФО содержит: цель финансовых отчетов; качественные характеристики информации приведенной в финансовых отчетах; определение и порядок признания элементов финансовых отчетов; концепции сохранения капитала. К пользователям финансовых отчетов Users of Finncil Sttements относятся существующие и потенциальные инвесторы работники кредиторы клиенты...
41135. Складові частини системи. Інтерфейс. 104 KB
  Система Ліга-Закон складається з окремих інформаційних баз, які містять правові документи прийняті законодавчими установами України з моменту прийняття, а також документи, що діють до цього часу або які представляють історичну цінність.
41136. Математические выражения для термодинамической работы и теплоты 97 KB
  Математические выражения для термодинамической работы и теплоты. Вычисление работы и теплоты. Вычисление теплоты. В качестве силы которая обеспечивает передачу теплоты от одних тел к другим Клаузиус предложил рассматривать температуру а в качестве обобщенной координаты некоторый параметр состояния который называется энтропия.
41137. Проекции прямой 337 KB
  Положение прямой относительно плоскости проекций Определение натуральной величины отрезка. Следы прямой. Проецирование прямой на три плоскости проекции.