21190

Поверхні другого порядку

Реферат

Математика и математический анализ

Розглянемо більш загальне рівняння яке містить в собі і квадратичний вираз на предмет того який геометричний об€єкт воно описує.1 перетвориться у рівняння 20. В новій системі координат рівняння 20. Перепишемо рівняння 20.

Украинкский

2013-08-02

575 KB

10 чел.

Поверхні другого порядку.

Лінійний вираз відносно координат точки тривимірного простору  описує площину. Розглянемо більш загальне рівняння, яке містить в собі і квадратичний вираз, на предмет того, який геометричний об”єкт воно описує.

, (20.1)

де . Згідно загальної теорії, викладеної раніше, матриця квадратичної форми цього виразу , як симетрична матриця, має три дійсних власних числа , яким відповідають три ортогональних власних вектора , . В базисі, побудованому на цих векторах, перехід до якого здійснюється за допомогою формул

, (20.2)

квадратична форма прийме канонічнний вид. Перетворення (20.2) означає поворот і, можливо, відбиття системи координат навколо початку координат (Рис.20.1).

Рис.20.1. Поворот системи координат

В результаті (20.1) перетвориться у рівняння

, (20.3)

де .

Подальший аналіз залежить від значень власних чисел .

I. Хай всі числа відмінні від нуля, . Тоді в (20.3) по кожній змінній можна виділити повні квадрати за допомогою формул

, (20.4)

які означають паралельний перенос осей координат. В новій системі координат  рівняння (20.3) прийме вид

, (20.5)

де .

Значення числа  і його знак, як і знаки чисел , можуть бути довільними.

1) Всі  мають однаковий знак.

а) . Рівнянню (20.5) відповідає тільки одна точка .

в) , . Всі доданки в (20.5) позитивні, тому цьому рівнянню не відповідає жодна точка - маємо уявну поверхню.

с) , . Перепишемо рівняння (20.5) у виді

, (20.6)

де . Переріз цієї поверхні координатними площинами дає еліпс, в чому легко переконатись, покладаючи в (20.6) , або , або . Тому така поверхня називається триосним еліпсоїдом (Рис.20.2).

Рис.20.2 Триосний еліпсоїд

Якщо дві півосі рівні, то одержимо еліпсоїд обертання. Наприклад, якщо , то маємо еліпсоїд обертання навколо осі . Переріз будь-якою площиною , перпендикулярною осі , дасть коло . Якщо всі три півосі рівні , то маємо рівняння сфери .

З рівняння (20.6) також витікає, що воно описує обмежену поверхню, бо переріз її з будь-якою площиною дає або пусту множину або, еліпс. Дійсно, наприклад, при  маємо

. (20.7)

Якщо , то (20.7) є рівняння еліпса з півосями , . Якщо , то (20.7) не має смислу, тобто площина  не перетинає цієї поверхні.

2) З трьох чисел  два мають один знак, а третє - протилежний.

а) . Хай . Тоді маємо

, (20.8)

де . Якщо це рівняння переписати так

, (20.9)

то видно, що (20.8) еквівалентно парі лінійних рівнянь

, (20.10)

або

, (20.11)

де  і  - довільні числа.

Кожна пара рівнянь описує пучок прямих в просторі. Таким чином, рівняння (20.8) описує поверхню, яка складається з прямих ліній, які всі перетинаються в одній точці - початку координат. Така поверхня називається лінійчатою поверхнею.

Перетин цієї поверхні площиною =h, перпендикулярною осі , дає еліпс

. (20.12)

Так як рівняння (20.12) має смисл при будь-якому значенні h, то це значить, що поверхня (20.8) нескінченна. При довільних  і  - це еліптичний конус (Рис.20.3), при  маємо круговий конус.

Рис. 20.3 Конус

в) . Хай  і  мають однаковий знак,  і  - їм пртилежний. Тоді з (20.5) маємо рівняння однопорожнинного гіперболоїда

, (20.13)

де . Назва поверхні зумовлена тим, що переріз будь-якою площиною  або  дає гіперболу, а площиною  дає еліпс. Конус (20.8) (на Рис.20.4 показаний штриховою лінією) для цієї поверхні є асимптотикою, до якої вона наближається на нескінченності (Рис.20.4).

Рис.20.4. Однопорожнинний гіперболоїд

Ця поверхня також є лінійчатою поверхнею, бо складається з двох систем прямих ліній, рівняння яких легко одержати з (20.13)

, (20.14)

та

. (20.15)

с) . Хай ,  і  мають однаковий знак, а  - їм протилежний. Тоді з (20.5) маємо рівняння двопорожнинного гіперболоїда

, (20.16)

де . Конус (20.8) також є асимптотичною поверхнею для цього гіперболоїда (Рис.20.5)

Рис.20.5. Двопорожнинний гіперболоїд

Переріз площинами  або  дає гіперболи, а площиною , якщо , - еліпс.

II. Хай одне власне число дорівнює нулю, наприклад, . Тоді при паралельному переносі осей  та : , з (20.3) маємо

, (20.17)

1)  . . (20.18)

а) , . З (20.18) маємо пару площин , або .

б) . Якщо , , то (20.18) не описує ні однієї точки.

в) , , . Рівняння (20.18) описує поверхню так званого еліптичного циліндра (Рис.20.6),

Рис.20.6. Еліптичний циліндр

бо в перерізі  маємо еліпс. Цей еліпс називається направляючою (лінією), бо вся поверхня циліндра утворюється при переміщенні по цьому еліпсу паралельно самій собі прямої лінії. До речі, рівняння (20.18) взагалі не залежить від цієї координати, тобто для будь-якої координати  воно одне і те ж. В перерезі площиною, паралельною осі , маємо прямі лінії (так звані твірні лінії).

d) , , . Рівняння (20.18) описує гіперболічний циліндр (Рис.20.7).

Рис.20.7. Гіперболічний циліндр

Циліндри є також лінійчатими поверхнями.

2)  Перенос вздовж осі ,  дасть

. (20.19)

a) . Маємо поверхню еліптичного параболоїда (Рис.20.8)

, (20.20)

де . В перерізі площинами  або  маємо параболи, площиною  - еліпс для рівняння з верхнім знаком, і порожню множиину для рівняння з нижнім знаком (при  - навпаки).

Рис.20.8. Еліптичний параболоїд, верхній знак

в) . Маємо поверхню гіперболічного параболоїда (Рис.20.9)

. (20.21)

Рис.20.9. Гіперболічний параболоїд, верхній знак

 Переріз площинами  або  дає параболи, площиною  - гіперболу, або спряжену гіперболу при .

Незважаючи на складність цієї поверхні, вона також є лінійчатою поверхнею, що легко видно з рівняння (20.21), яке можна записати у виді двох систем рівнянь прямих ліній

, (20.22)

або

. (20.23)

III. Тільки одне власне число відмінне від нуля, хай . Тоді з (20.3) при заміні , маємо

. (20.24)

1) Хоч одне з чисел  або  відмінне від нуля. Якщо зробити заміну

 (20.25)

де , , то з (20.24) одержимо рівняння параболічного циліндру

, (20.26)

з твірною, паралельною осі .

2) . Якщо , то маємо пару площин, якщо , то рівняння (20.24) не описує ніяких точок.

Таким чином, на відміну від лінійного рівняння, квадратичне рівняння (20.1) може описувати значно багатший набір геометричних об"єктів. Це може бути одна з поверхонь другого порядку: еліпсоїд, гіперболоїди, параболоїди або циліндри; це може бути пара площин; це може бути одна точка, або взагалі рівнянню (20.1) не буде відповідати жодна точка.

Контрольні питання.

1. При яких перетвореннях системи координат рівняння другого порядку приймає найпростіший вид?

2. Напишіть канонічне рівняння еліпсоїда.

3. Напишіть канонічні рівняння гіперболоїдів.

4. Напишіть канонічні рівняння параболоїдів.

5. Покажіть, що однопорожнинний гіперболоїд та гіперболічний параболоїд є лінійчаті поверхні.

6. Напишіть рівняння конуса.

7. Напишіть рівняння гіперболічного циліндра.

8. Наведіть приклад дослідження поверхні другого порядку методом перерізів.


ЗМІСТ

АНАЛІТИЧНА ГЕОМЕТРІЯ.......................................................................................................3

Лекція 13. Поняття аналітичної геометрії. Лінійні

геометричні  об”єкти.......................................................................................3

Лекція 14. Пряма на площині. Рівняння площини..................................14

Лекція 15. Векторний та змішаний добутки векторів. Площина

та пряма в просторі......................................................................................23

ЛІНІЙНІ ОПЕРАТОРИ. КРИВІ ТА ПОВЕРХНІ

ДРУГОГО ПОРЯДКУ...................................................................................................................... .34

Лекція 16. Лінійні оператори. Матриця оператора..............................34

Лекція 17. Власні числа та власні вектори оператора.

Самоспряжені оператори...............................................................................44

Лекція 18. Ортогональні оператори. Квадратичні форми.

Криві другого порядку.....................................................................................54

Лекція 19. Криві другого порядку................................................................62

Лекція 20. Поверхні другого порядку..........................................................70

PAGE  70


 

А также другие работы, которые могут Вас заинтересовать

50445. Статистические модели сигналов в линейных системах 527 KB
  Пусть случайный стационарный процесс заданный своим математическим ожиданием 1 и ковариационной функцией 2 поступает на вход стационарной линейной системы с весовой функцией . Соотношение входвыход в установившемся режиме равно = 3 Из выражения 3 следует что математическое ожидание сигнала на выходе системы . 4...
50446. Статистические модели сигналов в линейных системах 5.07 MB
  Пусть стационарный случайный процесс заданный своим математическим ожиданием 1 и ковариационной функцией 2 поступает на вход стационарной линейной системы с весовой функцией . Ковариационная функция сигнала на выходе системы описывается выражением ....
50447. Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели 72.5 KB
  Тема: Изучение распределения Гаусса и двумерного распределения Максвелла на механической модели. Для подобного рода вычислений необходимо знать закон или функцию распределения. Закон нормального распределения имеет вид 1.На рисунке 1 показан график распределения Гаусса; на нём представлены две кривые с разными мерами точности причём h1 h2.
50448. Определение коэффициента внутреннего трения жидкостей капилярным вискозиметром 55 KB
  Если по трубке течёт установившийся поток жидкости или газа то отдельные части потока движутся вдоль плавных линий тока форма которых определяется стенками трубки.При уве личении скорости потока даже в прямой трубке линии тока начинают закручиваться в виде вих рей или водоворотов и начинается энергичное перемешивание жидкости. Было установленно что характер течения жидкости зависит от значения безразмерной величи ны Reкоторая называется числом Рейнольда 1.В данной работе он определяется...
50449. ДАТЧИК ДАВЛЕHИЯ МТ100 1.08 MB
  УСТРОЙСТВО И РАБОТА ДАТЧИКОВ ПОДГОТОВКА К РАБОТЕ И ЭКСПЛУАТАЦИЯ ДАТЧИКОВ СХЕМА СОСТАВЛЕHИЯ УСЛОВHОГО ОБОЗHАЧЕHИЯ ДАТЧИКОВ ОБОЗHАЧЕHИЕ ИСПОЛHЕHИЙ ДАТЧИКОВ ПО МАТЕРИАЛАМКОHТАКТИРУЮЩИМ С ИЗМЕРЯЕМОЙ СРЕДОЙ
50450. Программирование на языке высокого уровня. Методические указания 105.5 KB
  Операторы языка Си управляют процессом выполнения программы. Набор операторов языка Си содержит все управляющие конструкции структурного программирования. В теле некоторых составных операторов языка Си могут содержаться другие операторы. Составной оператор ограничивается фигурными скобками все другие операторы заканчиваются точкой с запятой.
50451. Базовые инструменты программы Adobe Photoshop 159.5 KB
  Выбор цвета и заливка В блоке инструментов найдите инструмент Foreground color Bckground color Выберите основной цвет Выберите фоновый цвет; он выглядит так: При щелчке по верхнему квадрату раскрывается окно выбора цвета рисующих инструментов: кистей заливок фигур и др. Окна однотипны цвета в них можно выбрать несколькими способами. 2 Нажав кнопку Custom Библиотеки цветов выбрав одну из Библиотек Book а в ней – нужный образец цвета.
50452. Создание коллажа из текста и графики, удаление муара 1.08 MB
  В настоящей работе идейной проработки не требуется задача стоит проще: студентам предлагается создать коллаж объединив графические файлы из имеющегося набора и сделав текстовые вставки различного шрифтового начертания. Создайте холст для коллажа в окне File Файл → New Новый установив здесь необходимые параметры. Затем в соответствии с указаниями преподавателя откройте папку Коллаж не в Windows а в Photoshop в списке Тип файлов: поставьте JPEG в окне Вид – Эскизы страниц. Откройте файл отсюда надо перенести мяч в наш коллаж.
50453. Дополнительные возможности Adobe Photoshop 109.5 KB
  В этой работе описаны такие опции как создание Gifанимации и работа с векторными контурами. Создание Gifанимации Gifанимация – самый простой и исторически первый способ компьютерной анимации она появилась в 1989 году. Суть этого вида анимации в том что формат Gif позволяет помещать в одном файле последовательность отдельных кадров которые можно чередовать на экране через определенное время. Для создания Gifанимации имеется множество программ.