21191

Матриці. Лінійні дії з матрицями. Поняття лінійного простору

Реферат

Математика и математический анализ

Лінійні дії з матрицями. Вона характеризується таблицею чисел яку можна записати окремо і розглядати як суцільний обєкт що має назву матриця лат.2 Очевидно що матриця є узагальненням як числа так і вектора. Дійсно при m=1 n=1 матриця зводиться до числа при m=1 n=3 вона є векторрядок а при m=3 n=1 векторстовпець.

Украинкский

2013-08-02

207 KB

0 чел.

ЕЛЕМЕНТИ АЛГЕБРИ МАТРИЦЬ. ДЕТЕРМІНАНТИ.

СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ.

Матриці. Лінійні дії з матрицями. Поняття лінійного простору.

Матриці. З фізики відомі більш складні математичні об”єкти, ніж числа, серед таких об"єктів добре відомі вектори. Ці величини описують швидкість, силу, момент сили і т.п., і характеризуються не тільки числовим значенням, а й напрямком. Вектор, як математичний об”єкт, описується  трьома числами, які записують або у вигляді рядка, або у вигляді стовпця:

 чи .

Неважко навести приклад ще більш складного об”єкту. Нехай маємо систему n заводів, які випускають m видів продукції . Кожний вид продукції складається з n деталей, причому кожна з них випускається одним із заводів в кількості  штук, де  штук. При існуючій технології для випуску i-го виду продукції  необхідна деяка доля продукції k-го заводу, величину якої позначимо . Таким чином маємо систему рівностей для кількостей деталей:

  (3.1)

Ці рівності складають систему рівнянь. Вона характеризується таблицею чисел , яку можна записати окремо і розглядати як суцільний об”єкт, що має назву “матриця” (лат. matrix - матка, початок, джерело). Вперше це поняття з"явилося в середині XIX ст. у У. Гамільтона, А. Келі (Cayley Arthur, 1821-1895, Англія) і Дж. Сільвестра (Sylvester J.J., 1814-1897, Англія). Основи теорії матриць були створені К. Вейерштрасом (Wierstras Karl, 1815-1897, Німеччина) і Г. Фробеніусом (Frobenius Georg, 1849-1917, Німеччина) Будемо позначати матрицю одним символом:

 (3.2)

Очевидно, що матриця є узагальненням як числа, так і вектора. Дійсно, при m=1, n=1 матриця зводиться до числа, при m=1, n=3 вона є вектор-рядок, а при m=3, n=1 - вектор-стовпець.

Таким чином, матриця є таблиця чисел, розміщених в заданому порядку. Числа , які складають матрицю, називаються її елементами. Щоб показати це, матриці записують також у вигляді . Положення кожного елементу в матриці задається двома індексами ij. Перший індекс і визначає номер рядка, другий j - номер стовпця.. Елементи, які стоять на діагоналі, що проходить з лівого верхнього кута матриці утворюють головну діагональ матриці. Елементи, які стоять на діагоналі, що проходить з правого верхнього кута - бічну.

Формула (1.2) визначає матрицю загального виду. Матриця А називається прямокутною, якщо , та квадратною, якщо m=n . Виділяють також окремі види матриць. Нульова матриця - це матриця, яка складається з нулів. Верхня ступінчата матриця - це матриця, всі числа якої, що розміщені нижче головної діагоналі, дорівнюють нулю:

. (1.3)

Якщо всі елементи вище головної дїагоналі рівні нулю, матриця називається нижньою ступінчатою.

У випадку квадратної матриці верхня ступінчата називається верхньою трикутною, нижня ступінчата - нижньою трикутною.

Квадратна матриця, у якої відмінні від нуля тільки елементи на головній діагоналі, називається діагональною.

Одинична матриця Е - це діагональна матриця, у якої всі елементи на головній діагоналі дорівнюють одиниці.

Якщо матриця складається з одного рядка , то вона називається матрицею-рядком. Аналогічно, матриця

називається матрицею-cтовпцем.

Лінійні дії з матрицями.

1) Транспонування - дія, в результаті якої рядки і стовпці матриці міняються місцями із зберіганням порядку їх розміщення.

В результаті дії утрворюється нова матриця, яка називається транспонованою по відношенню до даної і позначається AT.

,    . (3.4)

Звідси видно, що елементи транспонованої матриці зв"язані з елементами вихідної матриці А формулою: .

Наприклад, матриця-стовпець  після транспонування перетворюється на матрицю-рядок AT = .  

Якщо транспонувати матрицю AT, то знову отримаємо початкову матрицю A, тобто (AT)T=A.

2) Рівність матриць. Порівнюють тільки матриці однакового розміру. Дві матриці однакового разміру рівні тоді і тільки тоді, коли їх елементи з одинаковими індексами рівні. Таким чином

 A = B , якщо , де i=1,2...m, j=1,2...n. (3.5)

3) Додавання матриць. Матриця С називається сумою матриць А та В, якщо

, (3.6)

де aij - елементи матриці A розміром mn, bij - елементи матриці B розміром mn та cij - елементи матриці С того ж розміру.

Приклад 1. Нехай , . Тоді сума дорівнює:

 =

Приклад 2.  Нехай

, . Тоді

 

 Властивості додавання матриць аналогічні властивостям додавання чисел (1-4) (Лекція 2) і являються їх наслідком:

1) A+B = B+A,

2) A+(B+C) = (A+B)+C,

3) А+О = А, де О - нульова матриця

4) A+(-A) = O, де елементи -A дорівнюють . Матриця -A називається протилежною матриці A.

4) Множення матриці на число: Матриця С розміру  називається добутком матриці А на число  ( - будь-яке дійсне число), якщо

. (3.8)

Приклад 3: Хай ,  .

Тоді +=.

Приклад 4:

.

Властивості множення  матриці на число:

5) (A) = ()A,

6) 1A = A,

7) (+)A = A+ A                                                        (3.9)

8) (A+B) = A +B.

Ці властивості є наслідком властивостей (7,8 та 11) дійсних чисел.

Таким чином, в розглянутих множинах математичних об”єктів - в множинах чисел, векторів та матриць можна ввести дві лінійні операції, а саме додавання та множення на число, які мають властивості, загальні для всіх цих об”єктів. Це дозволяє сформулювати нове поняття - поняття лінійного простору.

Поняття лінійного простору. Множина елементів, в якій введені операції додавання двох елементів та множення елемента на число, які не виводять за межі цієї множини та задовольняють властивостям додавання матриць та множення матриці на число, називається лінійним простором. Елементи лінійного простору називають також векторами.

Важливим поняттям в математиці і, в першу чергу, в теорії лінійних просторів, є поняття лінійної залежності елементів (векторів) лінійного простору. Сформулюємо означення цього поняття.

 Лінійною комбінацією елементів  називається сума , де  - деякі, в загальному випадку довільні числа.

Якщо є такі числа , серед яких хоча б одне відмінне від нуля, що лінійна комбінація елементів  дорівнює нулю,

, (3.10)

то ці елементи називають лінійно залежними.

Якщо таких чисел не існує, то елементи називають лінійно незалежними.

Важливі властивості, які пов”язані з лінійною залежністю:

1) Якщо  лінійно незалежні, то і будь-яка їх частина також лінійно незалежна. Доведення від протилежного: нехай частина елементів , де , лінійно залежна, тобто існують числа , серед яких хоча б одне відмінне від нуля, такі, що лінійна комбінація дорівнює нулю.

. (3.11)

Тоді дорівнює нулю і лінійна комбінація всіх k елементів, бо

.

А так як серед чисел  є відмінне від нуля, то це означає, що всі елементи  лінійно залежні, що суперечить умові.

2) Якщо елементи  лінійно залежні, то і поповнена система елементів ,, де , буде лінійно залежною. Дійсно, з лінійної залежності маємо, що існують такі числа, серед яких є відмінні від нуля, що

.

Домножаючи тепер елементи  на нулі і додаючи до попереднього рівняння одержимо

.

Таким чином, лінійна комбінація елементів , дорівнює нулю, і так як серед коефіцієнтів є відмінні від нуля, то ці елементи є лінійно залежними.

Контрольні питання.

1. Що таке матриця? Які є види матриць?

2. Чи змінюється матриця при транспонуванні?

3. Які матриці вважаються рівними?

4. Які ви знаєте лінійні дії над матрицями?

5. Які елементи називаються лінійно незалежними?

PAGE  26


 

А также другие работы, которые могут Вас заинтересовать

1474. ЭМОЦИОНАЛЬНЫЙ КОНЦЕПТ ЛЮБОВЬ В ИДИОСТИЛЕ А.С. ПУШКИНА 332.86 KB
  Ррассмотрение понятий концепт, концептуальная картина мира, представление методологических основ исследования концепта, определение понятия идиостиля, а также особенностей и возможностей поэтического перевода.
1475. ЛИНГВОКОГНИТИВНЫЙ И ПРАГМАТИЧЕСКИЙ УРОВНИ ЯЗЫКОВОЙ ЛИЧНОСТИ А.П. СТЕПАНОВА 334.33 KB
  Цель работы – определить особенности лингвокогнитивного и прагматического уровней структуры языковой личности первого енисейского губернатора А.П. Степанова, установить его ключевые (эстетические, утилитарные и художественные) ценности.
1476. КОНЦЕПТУАЛЬНЫЕ ИНВЕРСИИ: КОНЦЕПТ ЧУДО (НА МАТЕРИАЛЕ РУССКИХ И ИРЛАНДСКИХ ПОСЛОВИЦ, ПОГОВОРОК И СКАЗОК) 338.84 KB
  Целью данной работы является выявление лингвистических, хронотопических и нарративных особенностей выражения концепта чудо/miracle в текстах русского и ирландского фольклора, а также проверка гипотезы концептуальных инверсий применительно к данному концепту.
1477. НОМИНАТИВНЫЙ ПОТЕНЦИАЛ ГЛАГОЛЬНО-ИМЕННЫХ СЛОВОСОЧЕТАНИЙ ТИПА И TO GIVE A SMILE 339 KB
  Описать номинативный механизм ГИС с точки зрения когнитивного подхода в теории номинации и сопоставить русские и английские ГИС по характеру передаваемой ими когнитивной информации, исследовать и сопоставить когнитивно-коммуникативные свойства русских и английских ГИС в области семантического (И.И. Ковтунова, К.Г. Крушельницкая, В. Матезиус, Н.А. Слюсарева и др.) и актуального синтаксиса (Ч. Филлмор, У. Чейф, Р.О. Якобсон и др.)
1478. СОПОСТАВИТЕЛЬНЫЙ КОГНИТИВНЫЙ И ЛИНГВОКУЛЬТУРОЛОГИЧЕСКИЙ АНАЛИЗ РУССКИХ, БОЛГАРСКИХ И АНГЛИЙСКИХ АНЕКДОТОВ 339.73 KB
  Рассмотрение таких понятий как юмор, картина мира, стереотип, установка, ментальность, а также изучить понятие анекдот, проблему его определения отечественными и зарубежными исследователями, рассмотреть различные теории юмора, выработать исходные позиции.
1479. Мостовые устройства СВЧ 357.77 KB
  Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на микрополосковых ЛП. Проектирование делителя (сумматора) мощности пополам (моста Уилкинсона) на основе сосредоточенных реактивных элементов. Расчет МУ на сосредоточенных элементах.
1480. Проектирование металлических конструкций при строительстве здания 355.91 KB
  Расчет прокатных балок. Расчетная толщина сварочного углового шва. Расчетная нагрузка на вспомогательную балку. Требуемая площадь поясных горизонтальных листов. Расчет монтажного стыка сварной балки. Стык на высокопрочных болтах.
1481. ДЕРИВАЦИОННЫЕ ОСОБЕННОСТИ В СФЕРЕ СОВРЕМЕННОГО НАРЕЧНОГО ОБРАЗОВАНИЯ 342.23 KB
  Оценить продуктивность типов производства слов наречного класса, обратив внимание на изменение в этом аспекте по сравнению с прежними показателями. На основе изученного материала выявить наиболее активные процессы в современном наречном словообразовании. Установить специфику деривационных процессов при производстве слов наречного класса в сленге.
1482. Дискурсивно-лингвистические аспекты искусственного билингвизма 343.72 KB
  Проанализировать существующие точки зрения по проблематике исследования, уточнив соотношение понятия билингвизм со смежным понятием диглоссия. Определить содержание понятия дискурсивно-лингвистическая компетенция билингвов. Установить и описать генезис переводческих механизмов у студентов-билингвов на разных ступенях обучения посредством уточнения понятия единицы перевода.