21193

Властивості детермінантів

Реферат

Математика и математический анализ

Детермінант транспонованої матриці дорівнює детермінанту даної. З очевидної рівності випливає що детермінант можна записати також у вигляді == =.2 Після транспонування одержимо детермінант в добутках якого індекси множників помінялись місцями.

Украинкский

2013-08-02

220.5 KB

14 чел.

Властивості детермінантів.

1. Детермінант транспонованої матриці дорівнює детермінанту даної.

З очевидної рівності  випливає, що детермінант можна записати також у вигляді

==

=. (5.1)

Якщо в добутках, які входять в цю суму, множники попереставляти місцями, то при кожній зміні множників місцями одночасно поміняються місцями і числа в перестановках індексів. Але при кожній транспозиції число інверсій в кожній перестановці змінюється на непарне число, а значить їх сума на парне, таким чином добутки в (5.1) можна записати так

. (5.2)

Після транспонування одержимо детермінант , в добутках якого індекси множників помінялись місцями.

Оскільки сам добуток від порядку множників не залежить, а знак, згідно (5.2) теж не змінюється, то в результаті отримаємо те, що потрібно довести

. (5.3)

 Висновок: рядки та стовпці детермінанта рівноправні за своїми властивостями.

2. Загальний множник будь-якого рядка детермінанта можна виносити за знак детермінанта.

 Дійсно,

== = =  (5.4)

 Висновок: детермінант з нульовим рядком дорівнює нулю. Для доведення достатньо покласти .

3. Правило складання детермінантів.

Нехай у детермінанті елементи i-ого рядка становлять суму двох доданків: . Такий детермінант є сумою двох детермінантів, з яких в першому детермінанті на місці i-ого рядка стоять доданки , а в другому - доданки . Доведення:

=   

 (5.5)

Приклад:

 

4. Детермінант, у якого два рядки рівні, дорівнює нулю.

Для доведення розіб"ємо суму на дві частини, які відповідають парним та непарним перестановкам:

-

- (5.6)

Нехай рядки  та  однакові: ,  j= 1,2,... Замінемо місцями числа з -ого та -ого рядка, , , в кожному добутку суми з непарними перестановками. Це приведе до однієї транспозиції в усіх непарних перестановках, в результаті чого вони стануть парними. Оскільки сам добуток при цьому не зміниться, то одержимо, що з першої суми (з парними перестановками) віднімається така ж друга сума. В результаті маємо .

Приклад:

 .

5. Зміна місцями будь-яких двох рядків детермінанта не змінює його величини, але змінює його знак на протилежний.

 Доведення: Для коротшого запису позначимо рядок жирним шрифтом: . На основі властивості 4 маємо:

 (5.7)

Звідси одержимо:

. (5.8)

6. Якщо до будь-якого рядка детермінанта додати другий рядок, помножений на будь-яке число, величина детермінанта не зміниться.

Доведення:

 (5.9)

Висновок 1: До будь-якого рядка детермінанта можна додати довільну лінійну комбінацію інших рядків. При цьому величина детермінанта не зміниться.

Висновок 2: Детермінант, в якому є лінійно залежні рядки, дорівнює нулю.

Доведення: Нехай у детермінанті n-го порядку  перші k рядків лінійно залежні. Це означає, що існують такі числа, сума добутку яких на елементи цих рядків дорівнює нулю:  . При цьому де хоча б одне з чисел  відмінне від нуля. Нехай . Тоді  Віднявши від першого рядка детермінанта таку комбінацію інших рядків отримаємо в пешому рядку нулі. Отже, детермінант дорівнює нулю.

Приклад: , так як третій рядок є лінійною комбінацією перших двох: . У зв"язку з цим, віднімаючи від нього цю комбінацію, отримаємо в третьому рядку нулі  Отже, детермінант буде дорівнювати нулю.

7. Детермінант добутку двох квадратних матриць дорівнює добутку детермінантів множників:

, (5.10)

де A і В - квадратні матриці порядка . Схематичне доведення проведемо в декілька етапів.

1) Перш за все замітимо, що детермінант трикутної матриці, наприклад, верхньої трикутної

 (5.11)

дорівнює добутку елементів головної діагоналі, бо цей добуток буде єдиним доданком в сумі (5.1), відмінним від нуля. Отже,

. (5.12)

2) Розглянемо матрицю А, яку запишемо у виді

, (5.13)

де  - рядки матриці.

Помножимо її зліва на верхню унітрикутну матрицю

. (5.14)

Маємо

. (5.15)

В цій матриці перший рядок утворений з першого рядка матриці А добавленням всіх останніх рядків, помножених на числа , другий - з другого рядка добавленням всіх наступних, помножених на відповідні числа, і т. д. Згідно властивості 6 величина детермінанта матриці при цьому не зміниться, отже

. (5.16)

3) Розглянемо тепер так звану блочну матрицю  порядка , де A і В задані матриці, E - одинична матриця.

Скористаємося аналогією з формулою (5.12). Одержимо

. (5.17)

Цей результат може бути доведений строго, але в наслідок складності доведення воно тут не приводиться.

Помножимо зліва блочну матрицю на унітрикутну матрицю . При цьому детермінант, як це показано вище, не зміниться.

. (5.18)

Переставимо блоки  і  місцями, що рівносильно перестановці місцями  стовпців

 (5.19)

Звідси маємо

. (5.20)

Співставляючи цей результат з (5.18) маємо

. (5.21)

Контрольні питання.

1. Чим відрізняється властивість транспонування детермінанту від транспонування матриці?

2. Чому дорівнює детермінант з нульовим стовпцем?

3. Чим відрізняється властивість додавання детермінантів від додавання матриць?

4. Як змінюється детермінант при перестановці стовпців?

5. Сформулюйте властивість лінійного комбінування рядків або стовпців детермінанту.

6. Чому дорівнює добуток детермінантів?

PAGE  40


 

А также другие работы, которые могут Вас заинтересовать

11673. Учебно-методический комплекс дисциплины: Судовые турбомашины МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ 190.5 KB
  Учебно-методический комплекс дисциплины: Судовые турбомашины МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ВВЕДЕНИЕ Процесс постоянного увеличения мощности и уменьшения массогабаритных показателей СЭУ обусловил все большее применен...
11674. Робота з інформаційно-довідковою системою Независимые производители товаров и услуг 248.78 KB
  Тема: Робота з інформаційнодовідковою системою Независимые производители товаров и услуг. Мета: вивчити призначення і можливості інформаційнодовідкової системи Независимые производители товаров и услуг навчитися працювати з цією системою. Порядок виконання р...
11675. Створення діаграми класів 65.38 KB
  Тема: Створення діаграми класів. Мета роботи: отримати навички побудови діаграм класів створення пакетів і угруповання класів у пакети. Завдання: створити діаграму класів. Для одного зі сценаріїв діаграми прецедентів створеної в попередній лабораторній робот...
11676. Створення діаграм діяльності 50.69 KB
  Лабораторна робота № 3. Тема: Створення діаграм діяльності. Мета роботи: отримати навички побудови діаграм діяльності. Завдання: створити діаграму діяльності що описує один з бізнеспроцесів обраної предметної області; створити діаграму діяльності що оп...
11677. Баланс ліквідності підприємства 36.76 KB
  Тема: Баланс ліквідності підприємства. Мета: зробити фінансовий аналіз балансу ліквідності підприємства. Хід роботи Висновок: З цих даних отримуємо А1 П1 А2 П2 А3 П3 А4 П4 тобто ліквідність балансу відрізняється від абсолютної. При цьому нестача коштів по одній гру
11678. Моделювання та мінімізація логічних функції в різних пакетах прикладних програм 1.39 MB
  Використання електроніки в електроенергетиці, є досить розвинене. Майже усі технологічні процеси в галузі електроенергетики автоматизуються за допомогою змодельованих на ЕОМ процесів та схем. Найпоширеніше використання має алгебра логіки, яку далі розглянемо більш детальніше.
11679. Ітераційні методи розвязання систем лінійних алгебраїчних рівнянь. Метод Зейделя. Метод релаксації 40.97 KB
  Лабораторна робота №2 Ітераційні методи розвязання систем лінійних алгебраїчних рівнянь. Метод Зейделя. Метод релаксації. Мета роботи: познайомитися з ітераційними методами розвязання систем алгебраїчних рівнянь реалізувати заданий за варіантом метод у серед...
11680. МОДЕРНИЗАЦИЯ ЭЛЕКТРОПРИВОДА ЛЕНТОЧНОГО КОНВЕЙЕРА К-22 УГЛЕПОДГОТОВИТЕЛЬНОГО ЦЕХА №1 ЧерМК ОАО «Северсталь» 1.26 MB
  Развитие электропривода связывается с разработкой российским академиком Б. С. Якоби первого двигателя постоянного тока вращательного движения. Использование данного мотора на небольшом судне, которое в 1838 году произвело пробные поездки на Неве...
11681. Розвязання систем нелінійних рівнянь. Метод Ньютона 44.19 KB
  Лабораторна робота №4 Тема: Розвязання систем нелінійних рівнянь. Метод Ньютона. Мета роботи: познайомитися з методами розвязання систем нелінійних алгебраїчних рівнянь реалізувати заданий за варіантом метод у середовищі МatLAB. Завдання для виконання лаборат