21194

Логические модели представления знаний

Лекция

Информатика, кибернетика и программирование

3: sml vrt ktr tnk grz tks объекты; kls vnt krl vgr свойства. Предикаты и константы логической базы знаний Kонстанты Свойства 1 2 3 4 Колеса Винт Крыло Возит грузы kls Vnt krl vgr № Объекты Kонс танты Преди каты R kls R vnt R krl R vgr 1 Самолет sml Qsml Psml kls Psml vnt Psml krl Psml vgr 2 Вертолет vrt Qvrt Pvrt kls Pvrt vnt Pvrt krl Pvrt vgr 3 Катер Ktr Qktr Pktr kls Pktr vnt Pktr krl Pktr vgr 4 Танкер Tnk Qtnk Ptnk kls Ptnk vnt Ptnk krl Ptnk vgr 5...

Русский

2013-08-02

99 KB

10 чел.

PAGE  4

\\Лекция №7

7. Логические модели представления знаний

7.1. Основные положения

Одними из первых моделей представления знаний в истории развития интеллектуальных систем были логические (логико-лингвистические) модели – формализованные системы понятий и правил, в соответствии с которыми СИИ осуществляет операции над знаниями. В основу этих моделей была положена логика предикатов, которая является основным средством формализации левополушарного мышления человека (см. раздел 2).

В соответствии с логикой предикатов логическая модель представления знаний представляет собой упорядоченный набор логических формул в исчислении предикатов первого порядка, каждая из которых соответствует отдельному утверждению естественного (человеческого) языка.

Предикатом называется логическая функция, зависящая от одной или нескольких аргументов и принимающая одно из двух значений: истина или ложь. Аргумент предиката называется термом. Число термов определяет так называемую арность предиката.\\ 

Например, унарный предикат зависит от одной переменной:  "птица (х)", где  х – терм, который определяет конкретное название той или иной птицы. Три утверждения:  "7+5=12"  "8+9=17"  "4+5=10" соответствуют бинарному предикату  "плюс (х, у, z)". Первые две подстановки конкретных значений вместо  х, у, z  порождают истинное утверждение, третье – ложное.

\\Элементарным объектом логики предикатов, который имеет значение "истина", является литерал  (атом, атомарная формула), представляющий собой элементарное утверждение, которое состоит из предиката и связанных с ним термов. Литерал имеет вид:

P ( t1 ,  t 2 , … tn )     (7.1)

где  P – обозначение предиката;   ti  ( i =1…n ) – термы.\\

Литерал  называется  негативным, если он  стоит под знаком отрицания;  в противном случае он называется  позитивным.

\\7.2. Основные элементы логики предикатов

Исчисление предикатов первого порядка использует такие основные элементы:

  •  \\константы (константные термы):  c1 , c2 , …;
  •  переменные (переменные термы):  x1,  x2 , …;
  •  функциональные литеры:  f1,  f2 , …;
  •  предикатные литеры:  p1,  p2 , …;
  •  логические символы:   , , , , , , ;
  •  специальный символ  , обозначающий "противоречие" .

В табл. 7.1 приведены основные логические формулы в исчислении предикатов первого порядка.

Табл. 7.1.  Логические формулы исчисления предикатов

Логическая формула

Запись

Интерпретация

Конъюнкция

a & b

"a  and  b"

Дизъюнкция

a  b

"a  or  b"

Отрицание

~ a

"not  a"

Импликация

a  b

"если  a,  то  b"

Тождество (эквивалентность, равенство) 

a  b

"a  эквивалентно  b"

Ошибочность

a  

"ошибочность  а"

С каждым предикатом может быть связан  квантор - элемент, который определяет, при каких условиях предикат превращается в истинное утверждение. Различают квантор обобщения   (all – для всех)  и  квантор существования    ( exist  - существует ).\\

Например, запись   u r  означает, что  r   справедливо  для всех  u;  запись   u r  означает, что существует  u,  для которого r   справедливо.

\\Дизъюнкция некоторой совокупности литералов называется фразой (дизъюнктом). Дизъюнкция, среди литералов которой имеется лишь один позитивный литерал (а все другие – негативные), называется  фразой Хорна.\\ Например, дизъюнкция  ~ A  ~B  ~ C  D,  в которой все литералы, кроме D, являются негативными, является фразой Хорна. Она эквивалентна логическим формулам  ~ (A  B  C)  D  и  A , B, C   D,  т.е. фразы Хорна по существу являются импликациями.

||В табл.7.2 приведены возможные преобразования логических формул к некоторым равносильным  представлениям, позволяющим строить утверждения в виде фраз, в том числе – фраз Хорна.\\

Табл. 7.2.  Преобразования логических формул

Преобразование

Формула

Равносильные формулы

Импликация

a b

~ a    b

Тождество

a b

a b & b a

a & b (~ a & ~ b )

Перемещение отрицания

~ ( a  &  b )

~ (a    ~ b)

~ a    ~ b

Преобразование кванторов

~ (a, b)

(a, ~ b)

~ (a, b)

(a, ~ b)

Перенесение операций

(a & b) з

(a b) & (b с)

a  (b & с)

(a b) & (a с)

\\7.3. Построение логической базы знаний

База знаний, построенная с использованием логической модели представления знаний, называется логической базой знаний. Она состоит из упорядоченного набора аксиом (истинных утверждений), которые могут быть либо фактами, либо правилами.

Факт представляет собой утверждение (предикат) (7.1), аргументами (термами) которого являются константы, например:   P ( а, b,  с ).

Правило состоит из упорядоченной последовательности нескольких утверждений вида:

Р1 & Р2  & …& Рn  Q,

где  Рi  (i = 1…n) -  утверждения-условия;  Q утверждение-следствие.

Создание логической базы знаний осуществляется в следующем порядке.

1) На первом этапе определяются основные базовые элементы (словарь) данной предметной области, т.е. предметные константы, предметные переменные и предикаты.\\ Одни и те же знания могут быть описаны различными базовыми элементами. Их выбор  зависит от профессиональных способностей разработчиков базы знаний и специфики заданий (задач) предметной области, решаемых интеллектуальной системой. Этот процесс имеет неформальный характер и часто требует большой изобретательности. Проектировщик должен тщательно продумать концептуальную структуру базы знаний и выбрать наилучший вариант из нескольких возможных.

\\2) Аксиомы (правила) базы знаний представляются в пренексной (префиксной) нормальной форме, которая имеет следующий вид:

К1 х1  К2 х2 … Кnхn  M,     (7.2)

где Кi  ( i=1…n ) – i квантор (существования или обобщения)  хі-го предиката;  Mнекоторая бескванторная конъюнктивная нормальная форма, т.е. конъюнкция определенного числа  дизъюнктов.\\

\\3) Из пренексной нормальной формы исключаются кванторы существования путем введения в аксиомы так называемых  констант  и  функций  Сколема, например:

 х: Р ( х )      Р(с),    у    х: Р ( х, у )    у  Р( h ( y ),  y ),

где  c  и  h ( y )  - константа  и  функция  Сколема.

Кванторы  обобщения  исключаются автоматически на основе стандартной процедуры, освобождающей формулу от  кванторов, например:

х  Р ( х )     Р( х )   х   у   z  Р ( х, у, z )      Р( х, у, z ).\\

\\4) После исключения кванторов существования и обобщения необходимо представить аксиомы базы знаний в виде фраз Хорна (табл.7.2), которые используются для осуществления процедуры логического вывода на знаниях (раздел 8) с целью решения задач пользователей интеллектуальной системы.\\

\\7.4. Пример построения логической базы знаний

Рассмотрим пример построения логической базы знаний прототипа экспертной системы (ЭС) (раздел 4.11) с использованием логической модели представления  знаний. Создание такой базы знаний осуществляется в следующем порядке (раздел 7.3).

а) Вводятся константы  (табл.7.3):

sml,  vrt,  ktr,  tnk,  grz,  tks   (объекты);

kls,  vnt,  krl,  vgr   (свойства).\\

Табл.7.3.  Предикаты и константы логической базы знаний

Kонстанты

Свойства

1

2

3

4

Колеса

Винт

Крыло

Возит грузы

kls

Vnt

krl

vgr

Объекты

Kонс

танты

Преди

каты

R (kls )

R (vnt )

R (krl)

R (vgr )

1

Самолет

sml

Q(sml)

P(sml, kls)

P(sml, vnt)

P(sml, krl)

P(sml, vgr)

2

Вертолет

vrt

Q(vrt)

P(vrt, kls)

P(vrt, vnt)

~P(vrt, krl)

P(vrt, vgr)

3

Катер

Ktr

Q(ktr)

~P(ktr, kls)

P(ktr, vnt)

~P(ktr, krl)

P(ktr, vgr)

4

Танкер

Tnk

Q(tnk)

~P(tnk, kls)

P(tnk, vnt)

~P(tnk, krl)

P(tnk, vgr)

5

Грузовик

grz

Q(grz)

P(grz, kls)

~P(grz, vnt)

~P(grz, krl)

P(grz, vgr)

6

Такси

Tks

Q(tks)

P(tks, kls)

~P(tks, vnt)

~P(tks, krl)

~P(tks, vgr)

\\б) Вводятся переменные:   x -  объект,   y  -  свойство объекта.

в) Вводятся  предикаты:

P ( x, y ) – объект  x  имеет  свойство  y;

Q ( x ) –  x  является  объектом;

R ( y ) – y является свойством.

г) С учетом введенных предикатов (табл.7.3) пренексная нормальная форма (7.2) утверждений базы знаний имеет вид:

P(sml, kls) & P(sml, vnt) & P(sml, krl) & P(sml, vgr)   Q(sml)\\

P(vrt, kls)  & P(vrt, vnt)  & (~ P(vrt, krl)) & P(vrt, vgr)   Q(vrt)

~ P(ktr, kls) & P(ktr, vnt) & (~ P(ktr, krl)) & P(ktr, vgr)   Q(ktr)

~ P(tnk, kls) & P(tnk, vnt) & (~ P(tnk, krl)) & P(tnk, vgr)   Q(tnk)

P(grz, kls) & (~ P(grz, vnt)) & (~ P(grz, krl)) & P(grz, vgr)   Q(grz)

P(tks, kls) & (~ P(tks, vnt)) & (~ P(tks, krl)) & (~ P (tks, vgr))  Q(tks)

P(sml, kls) & P(vrt, kls) & (~P(ktr, kls)) & (~P(tnk, kls)) & P(grz, kls) & P(tks, kls)  R (kls)

P(sml, vnt) & P(vrt, vnt) & P(ktr, vnt) & P(tnk, vnt) & (~P(grz, vnt)) & (~P(tks, vnt))  R (vnt)

P(sml, krl) & (~P(vrt, krl)) & (~P(ktr, krl)) & (~P(tnk, krl)) & (~P(grz, krl)) & (~P(tks, krl))  R (krl)

P(sml, vgr) & P(vrt, vgr) & P(ktr, vgr)) & P(tnk, vgr) & P(grz, vgr) & (~P(tks, vgr))  R (vgr)

\\д) Для осуществления логического вывода на знаниях приведенные утверждения необходимо представить в виде следующих фраз Хорна (табл.7.2):

~P(sml, kls)  ~P(sml, vnt)  ~P(sml, krl)  ~P(sml, vgr)    Q(sml)\\

~P(vrt, kls)  ~P(vrt, vnt)  ~P(vrt, vgr)    Q(vrt)

~P(ktr, vnt)  ~P(ktr, vgr)    Q(ktr)

~P(tnk, vnt))  ~P(tnk, vgr)    Q(tnk)

~P(grz, kls))  ~P(grz, vgr)    Q(grz)

~P(tks, kls)    Q(tks)

~P(sml, kls)  ~P(vrt, kls)  ~P(grz, kls)  ~P(tks, kls)    R (kls)

~P(sml, vnt)  ~P(vrt, vnt)  P(ktr, vnt)  P(tnk, vnt)    R (vnt)

~P(sml, krl)    R (krl )

~P(sml, vgr)  ~P(vrt, vgr)  ~P(ktr, vgr)  ~P(tnk, vgr)  ~P(grz, vgr)    R (vgr)


 

А также другие работы, которые могут Вас заинтересовать

32791. Общее понятие о философии. Исторические основания возникновения философии. Дофилософские мировоззренческие системы и их роль в формировании философии 15.71 KB
  Философия зародилась около 25 тыс. Термин философия был введен Пифагором и дословно означал любовь к мудрости phileo любовь sophi мудрость. Философия все больше превращалась в обобщенную систему знаний о мире задачей которой являлось дать ответы на наиболее общие глубинные вопросы о природе обществе человеке. Философия это форма духовной деятельности человека форма общественного сознания направленная на осмысление коренных мировоззренческих вопросов.
32792. Спецефика филосовского знания. Соотношение философии и частных наук. Взаимосвязь философии и медецины 15.26 KB
  Соотношение философии и частных наук. Взаимосвязь философии и медецины. С выделением отдельных наук в самостоятельные области знаний возникает вопрос о соотношении философии и частных наук под частными науками понимаются те которые изучают отдельные области реальности. Роль философии представители данного направления сводят к логическому анализу научного языка; 3антисциентизм ограничивает роль науки решением узко практических задач.
32793. Основной вопрос философии и его 2 стороны. Исторические формы материализма и идеализма 16.65 KB
  Основной вопрос философии и его 2 стороны. Центральная мировоззренческая проблема об отношении человека к миру конкретизируется в философии как вопрос об отношении мышления к бытию об отношении идеального и материального. Этот вопрос является основным вопросом философии т. Крупнейший представитель немецкой классической философии И.
32794. Исторические этапы развития мировой филосовской мысли. Основные филосовские принципы и исторические типы филосовствования 14.95 KB
  В истории философской мысли также выделяются основные типы философствования философского анализа. В античности созерцательный тип философствования проявился в натурфилософии философии природы а в Древнем Китае в принципе недеяния т. 2Умозрительный тип философствования это способ теоретического постижения действительности основанный на отвлеченных логических построениях не связанных с опытными данными. Ярким примером умозрительного типа философствования являются доказательства существования Бога в учении Ф.
32795. Особенности Древнеиндийской философии. Её основные направления 17.32 KB
  В развитии культуры Древней Индии можно выделить два основных периода: 1ведический предфилософский сер. связанный с переселением на территорию Древней Индии арийских племен. Культура Древней Индии в целом и философия в частности возникла и развивалась в условиях кастовой организации общественной жизни патриархальных традиций и власти деспотического государства. Основным культурным источником философии Древней Индии стала ведическая литература.
32796. Особенности Древнекитайской философии и её основные направления 17.69 KB
  В этот период создавались важнейшие философские школы оказавшие огромное влияние на общественную мысль китайского общества: конфуцианство даосизм моизм легизм и др. б даосизм как онтологическое учение его наивнодиалектический характер. Основателем даосизма является мудрец Лаоцзы VI V вв. Его главный труд Даодэцзын Книга о Дао и Дэ.
32797. Античная философия: этапы развития и характерные черты. Первые греческие мыслители 22.71 KB
  Античная философия: этапы развития и характерные черты. Античная философия возникла в Древней Греции в середине I тысячелетия до н. В центре внимания философии данного периода проблемы природы космоса в целом; 2классическая греческая философия учения Сократа Платона Аристотеля V IV вв. Главное внимание здесь уделяется проблеме человека его познавательных возможностей; 3философия эпохи эллинизма III в.
32798. Философия Платона, Теория познания Платона 14.35 KB
  Наиболее известные диалоги Платона: Государство Пир диалоги Софист и Федр посвящены проблеме души Тимей вопросу возникновения Космоса Протагор проблеме добродетели. Человек по Платону единство души и тела которые в то же время противоположны. Смертное тело только тюрьма для души оно источник страданий причина всех зол; душа гибнет если она слишком срослась с телом в процессе удовлетворения своих страстей. Стимулом к совершенствованию души является любовь к прекрасному.
32799. Философия эпохи эллинизма, ее основные направления 14.57 KB
  На развитие античной философии значительное влияние оказал распад империи А. Неоплатонизм получил распространение в период когда античный способ философствования уступал место философии основанной на христианской догматике. Это последняя попытка решить задачу создания целостного философского учения в рамках дохристианской философии. Главное отличие от философии Платона заключается в том что мир идей Платона это неподвижный безличный образец мира а в неоплатонизме появляется активное мыслящее начало Ум.