2123

Оценка тяговой характеристик СДМ с механической трансмиссией

Курсовая

Логистика и транспорт

Трактор МТЗ – 82 предназначен для выполнения различных сельскохозяйственных работ на повышенных скоростях с навесными и прицепными машинами.

Русский

2013-01-06

1.22 MB

46 чел.

Тема проекта Оценка тяговой характеристик СДМ с механической трансмиссией


Содержание

  1.  Введение
  2.  Исходные данные
  3.  Кривая буксования
  4.  Сила сопротивления колес
  5.  Регуляторная характеристика
  6.  Окружная сила колесного движителя
  7.  Скорость движения
  8.  Часовой расход топлива
  9.  Тяговые характеристики
  10.  Заключение
  11.  Список использованных источников


Введение.

Трактор МТЗ – 82 предназначен для выполнения различных сельскохозяйственных работ на повышенных скоростях с навесными и прицепными машинами. Используется на пахоте, предпосевной обработке почвы, посеве, междурядной обработке пропашных культур, сенокошении, стоговании, в агрегате со свеклоуборочными, силосоуборочными и кукурузоуборочными комбайнами, а также на транспортных и дорожно-строительных работах и для привода стационарных машин.

Работа выполнена в соответствии с заданием кафедры «дорожные машины»


Исходные данные

Трактор „Беларусь" МТЗ-82/МТЗ-82Л

(модификация МТЗ-80/МТЗ-80Л)

Код ОКП 47 2423 1007 Шифр по «Системе машин»

Р 1.1.17/1

Колесный универсально-пропашной повышенной проходимости тягового класса 14 (1,4).

Трактор «Беларусь» МТЗ-82/МТЗ-82Л награжден шестью золотыми медалями: на международных выставках «Агро-машэкспо-73», «Агромашэкспо-77», «Агромашэкспо-78» (г. Будапешт, ВНР, сентябрь 1973 г., апрель 1977 г., апрель 1978 г.); на международных ярмарках (г. Лейпциг, ГДР, март 1976 г.' п г. Загреб, СФРЮ, сентябрь 1976 г.), на XXXVI Пловдивской международной выставке (сентябрь-октябрь 1980 г.).

ОСНОВНЫЕ ПОКАЗАТЕЛИ

Габаритные размеры, мм:

длина 3930

ширима . 1970

высота . . 2470 (2705 *)

Масса трактора, кг;

конструктивная 3370 (3620*)

эксплуатационная . ... . . 3580 (3730 *)

База, мм 2450

Колея, мм (регулировка бесступенчатая):

передних колес 1250—1800

задних колес 1400—2100

Координаты центра тяжести трактора, мм:

но длине (от оси задних колес) . . 887

по высоте 805

Распределение массы трактора по осям, кг:

ни переднюю ось 1270 (1380 *)

на заднюю ось  .... 2100 (2240*)

Ходовая система:

тип  ... колесная 4X4

обозначение шин (ГОСТ 7463—80) передних колес П,2 - 20

* Для трактора с унифицированной кабиной.

КРАТКАЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Тип трактора колесный, универсально-пропашной, повышенной проходимости Номинальное тяговое усилие, кгс . . . 1400

Масса трактора конструктивная, кг . . 3360

Удельная металлоемкость, кг/л. с. . 37,5

Число передач:

вперед без редуктора 9

вперед с редуктором 9

назад без редуктора 2

назад с редуктором 2

Диапазон скоростей, км/ч:

вперед без редуктора 2,01 —33,4

вперед с редуктором 1.47—24,55

назад без редуктора 4,28—7,29

назад с редуктором 3,14—5,35

Колея, мм 1200-1800

База, мм 2450

Дорожный просвет, мм 650

Давление воздуха в шинах, кгс/см2 . . . 0,8—1,4

Марка двигателя  Д-240 (Д-240Л)

Тип двигателя 4-цилиндровый, четы- рехтактный с непо- средственным впрыс- ком

Номинальная мощность при2200об/мин, л. с.. 75—80

Запас крутящего момента, °/о, не менее 12

Удельный расход топлива двигателя,

г/э.л.с.ч 190

Диаметр цилиндра, мм 110

Ход поршня, мм 125

Рабочий объем цилиндров, л 4,75

Масса двигателя, кг:

Д-240 (Д-240Л) 430 (490)

Емкость топливного бака, л 120

Пуск двигателя…………………………Д-240 — электростартером; Д-240Л — пусковым двигателем ПД-10М с электростартером

Изготовитель — Минский тракторный завод. Начало серийного производства— 1973 г.

Методика построения тяговой характеристики колесной ЗТМ с механической трансмиссией графо-аналитическим способом:

1. В первом квадранте строим кривую коэффициента буксования колесного движителя δ в функции силы тяги землеройно-транспортной машины Т по формуле

 (1)

где А, В, n – коэффициенты, зависящие от типа шин, давления воздуха, вида, состояния и влажности грунта;

R – нормальная реакция грунта на ведущие колеса;

Т – сила тяги

   (2)

За начало координат принимаем точку О.

2. Подсчитываем силу сопротивления качению колес землеройно-транспортной машины Pf по формуле

 (3)  

где f – коэффициент сопротивления качению ведомых колес;

R – нормальная реакция грунта на все колеса;

R - нормальная реакция грунта на ведущие колеса;

β – параметр, учитывающий увеличение коэффициента сопротивления качению колесного движителя при работе на режиме «ведущего колеса».

Найденное значение Pf откладываем влево от точки О. Полученная точка О1 будет началом координат окружной силы колесного движителя Рк.

3. Во втором квадранте размещаем регуляторную характеристику двигателя, перестроенную в функции крутящего момента Ме.

Таблица 1. Значения показателей регуляторной характеристики

Ne, кВт

ne, об/мин

Ме, Н·м

Ge, кг/ч

0

2375

0

3

10

2350

32

4,5

20

2325

63

6

30

2300

95

7,25

40

2275

125

8,6

50

2255

158

10,2

60

2230

188

11,7

70

2220

225

13,25

74

2200

236

14

70

2000

245

13,25

60

1625

262

11,75

4. В первом квадранте для каждой передачи строим график, устанавливающий зависимость крутящего момента двигателя Ме от окружной силы колесного движителя Рк.

  (4)

где Ме - крутящий момент;

iM – общее передаточное отношение трансмиссии;

ηМ – КПД трансмиссии;

rc – силовой радиус колесного движителя

   (5)

 

 

5. Строим основную зависимость тяговой характеристики землеройно-транспортной машины – кривую действительной скорости движения в функции силы тяги Т. Для этой цели задаемся значением силы тяги Тi; откладываем его на графике, а затем восстанавливаем перпендикуляр из точки до пересечения с лучом Рк. Через полученную точку проводим

горизонталь до пересечения с кривыми регуляторной характеристики

двигателя. Проектируя точку на ось абсцисс по шкале ne, находим число оборотов коленчатого вала двигателя, соответствующее принятому значению силы тяги. Определив значение коэффициента буксования, которое соответствует той же силе тяги, подсчитываем значение действительной

скорости движения по формуле

 (6)

где ne –число оборотов коленчатого вала;

rc – силовой радиус колесного движителя;

iM – общее передаточное отношение трансмиссии;

δ - коэффициента буксования колесного движителя.

Таблица 2. Значение показателей действительной скорости

Т, Н

ne, об/мин

δ, %

, км/ч

0

2363

0,048

4,9

2500

2350

0,12

4,5

5000

2337,5

0,19

4,1

7500

2325

0,26

3,7

10000

2313

0,33

3,3

12500

2300

0,405

2,9

17500

2275

0,548

2,2

6. Строим основную зависимость тяговой характеристики землеройно-транспортной машины – кривую часового расхода топлива GT в функции силы тяги Т. Часовой расход топлива при силе тяги Тi может быть найден, если точку спроектировать на ось абсцисс второго квадранта, а затем найденное значение Ge отложить в первом квадранте. При этом считаем, что масштабы шкал Ge и GT одинаковы, а их началом является точка О.

7. Построение производных зависимостей тяговой характеристики:

кривая тяговой мощности NT строится по точкам, которые определяются расчетом по формуле

  (7)

где Т – сила тяги;

- действительная скорость движения.

кривая зависимости удельного расхода топлива gT от силы тяги землеройной машины строится с помощью формулы

   (8)

где GT - часовой расход топлива;

NT – тяговая мощность.

кривую зависимости тягового к.п.д. ηТ от силы тяги землеройно-транспортной машины строим, применяя формулу

   (9)

где NT – тяговая мощность;

Ne- мощность двигателя.

Заключение

В ходе выполнения практической работы был произведен расчет и построена тяговая характеристика МТЗ-82 II передачи графо-аналитическим способом.

В результате использованного метода построены регуляторные характеристики двигателя, кривая буксования, тяговые характеристики колесного трактора, определили силы сопротивления качения, окружную силу колесного движителя, действительную скорость движения, тяговую мощность, удельный расход топлива и тяговый к.п.д.

Построение показывает, что на II передаче по двигателю имеется значительный запас крутящего момента, трактор буксует при силе тяги Т=17542Н.

Список использованных источников

  1.  Теория самоходных колесных землеройно-транспортных машин / Н.А. Ульянов – «машиностроение» Москва 1969г.
  2.  Тягачи строительных и дорожных машин / Ю.А. Брянский, М.И. Грифф, В.А. Чурилов - «высшая школа» Москва 1976г.
  3.  Проекты по строительным и дорожным машинам: методические указания / А.И. Демиденко, В.И. Лиошенко, Д.С. Снигерев Омск 2005г.

 

А также другие работы, которые могут Вас заинтересовать

20238. Поширення пружних хвиль у рідинах. Залежність швидкості поширення та коефіцієнта поглинання від термодинамічних параметрів 115.5 KB
  Щоб описати розповсюдження хвилі в середовищі необхідно записати хвильове рівняння. Для цього: 1 Записати рівняння руху частинки середовища макроскопічно малого обєму середовища лінійні розміри обємчику набагато менші довжини хвилі звука; 2 Записати реологічне рівняння для середовища. 3 Підставити реологічне рівняння в рівняння руху → хвильове рівняння для данного середовища. Реологічне рівняння це рівняння яке повязує тензор напруг з тензором деформацій і тензором швидкості деформацій.
20239. Міжмолекулярна взаємодія в газах та рідинах 62.5 KB
  Вона базується на припущеннях: міжмолекулярна взаємодія є слабкою розміри частинок набагато менше за відстань між ними; адіабатичне наближення електростатичне поле сусідньої молекули збурює енергетичні стани лише електронів; наближення мультипольного розкладу електричні заряди в молекулі по обєму розповсюджені нерівномірно і можуть бути вільні заряди: монополі диполі квадруполі октуполі. Енергія міжмолекулярної взаємодії це потенціальна енергія однієї молекули в електростатичному полі другої молекули. Маємо дві молекули А і В...
20240. Розсіяння нейтронів як джерело інформації про динаміку молекул 101 KB
  Розсіяння нейтронів як джерело інформації про динаміку молекул Існує загальний метод опису динаміки речовини просторовочасові корелятивні функції. Одним із шляхів визначення корелятивних функцій є розсіяння нейтронів. Візьмемо двічі диференційний переріз розсіяння нейтронів кількість нейтронів що вилетять із зразка під певним кутом в елемент тілесного кута і при цьому зміна енергії нейтронів потрапляє в інтервал від до де пр пружне нп непружне ког когерентне нк некогерентне. Наслідком цього є розбиття перерізу...
20241. Понятие, предмет, задачи дисциплины «охрана труда в отрасли» 108 KB
  Охрана труда как социально-экономический фактор и область науки. Этапы развития охраны труда. Понятие охраны труда в законодательстве Украины. Предмет, содержание и задачи дисциплины охраны труда в отрасли. Взаимодействие охраны труда с другими дисциплинами.
20242. Основи методу Монте-Карло 146.5 KB
  точки та розрахувати в кожному полож. точки її енергію з частинками системи. Будується ланцюг випадкових переміщень однієї точки. точки; 2 обрати модель потенціальної енергії; 3задати температуру та довжину кроку відображ.
20243. Полімерний стат. клубок 46.5 KB
  клубок Полімерні молекули ланцюги з великої кількості ланок вони можуть відрізнятися сладом однакові ланки або різні степенем гнучкості числом гілок та заряджених груп. Найпростіша полімерна молекула послідовність великої кількості атомних груп з`єднаних у ланцюг ковалентними хімічними зв`язками. N масі ланцюга. Полімерний ланцюг має N 1 N 102 104 Полімерні молекули поділяються на лінійні та тривимірні.
20244. Спектральний склад розсіяного світла в газах. Ефект Мандельштама-Брілюена 85 KB
  Спектральний склад розсіяного світла в газах. Розсіяння світла це зміна якоїсь характеристики потоку оптичного випромінювання світла при його взаємодії з речовиною. Цими характеристиками можуть бути просторовий розподіл інтенсивності частотний спектр поляризація світла. Фізична причина розсіяння світла в чистій речовині полягає в тому що в силу статистичної природи теплового руху молекул середовища в ньому виникають флуктуації густини.
20245. Особливості реологічної неньютонівської рідини 90 KB
  Не ньютонівська течіяпри різних швидкостях течії рідина характеризується різними в‘язкостями. Для того щоб визначити поняття не ньютонівської рідини згадаємо що таке ньютонівська рідина. Бінгалівська рідина межа пластичностітобто в системі існує область де напруження не впливає на зсув характерною ознакою є те що течія починається коли дотичне напруження τ перевищує межу пластичності θ. ; немає зсуву шарів рідина рухається як жорсткий стержень.
20246. Взаємодія повільних нейтронів 57 KB
  Зіткнення нейтрона з ядром може відбуватись двома шляхами: або 1без утворення проміжного ядра коли нейтрон розсіюється безпосередньо силовим полем ядрапружне та непружне розсіяння 2або з утворенням проміжного збудженого ядра з наступним його розпадом по одному з можливи каналів: Авипромінювання γ квантів процес радіаційного захвату нейтрона ядром Б випромінювання заряджених частинок В ділення ядра В області повільних нейтронів енергія 1еВ основні процеси пружне ядерне розсіяння радіаційний захват нейтрона ядрома бо...