21443

Дифференциальные уравнения с частными производными первого порядка

Лекция

Математика и математический анализ

Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида: . 2 Это уравнение линейно относительно производных но может быть нелинейным относительно неизвестной функции Z. Если а коэффициенты Xi не зависят от z то уравнение 2 называется линейным однородным.

Русский

2013-08-02

170 KB

14 чел.

Лекция 16

Дифференциальные уравнения с частными производными первого порядка

    Наиболее общее уравнение с частными производными I порядка с n независимыми переменными может быть записано в виде

                                             ,                                            (1)

где F – заданная функция,  - искомая функция,  - независимые переменные.

Пример 1.   

.

Интегрируя, имеем

z(x,y) = ,

где  - произвольная функция от y.

Пример 2.

.

Интегрируя по x, получим

,

где  - произвольная функция y. Интегрируем теперь по y:

,

где  - произвольная функция от . Окончательно имеем:

z(x,y) = ,

где

                                                   -

произвольная функция.

    Из приведенных примеров видно, что общее решение дифференциального уравнения с частными производными I порядка зависит от одной произвольной функции, общее решение уравнения II порядка – от двух произвольных функций.

    Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида:

                   .           (2)

Это уравнение линейно относительно производных, но может быть нелинейным  относительно неизвестной функции Z.

Если , а коэффициенты Xi не зависят от z, то уравнение (2) называется линейным однородным.

    Рассмотрим вначале квазилинейное уравнение с двумя независимыми переменными

                      P(x, y, z) + Q(x, y, z) = R(x, y, z),                                       (3)

где P, Q, R непрерывны в некоторой области изменения переменных и не обращаются в нуль одновременно.

Рассмотрим непрерывное векторное поле

.

Векторные линии этого поля (т.е. линии, касательные к которым в каждой точке имеют направление, совпадающее с направлением вектора  в той же точке) определяются из условия коллинеарности вектора , направленного по касательной к искомым линиям, и вектора поля :

                                 =  = .                                  (4)

Поверхности, составленные из векторных линий, точнее, поверхности целиком содержащие векторные линии, имеющие хотя бы одну общую точку с поверхностью, называются векторными поверхностями.

Очевидно, векторные поверхности можно получить, рассматривая множество точек, лежащих на произвольно выбранном непрерывно зависящем от параметра однопараметрическом семействе векторных линий. Векторная поверхность характеризуется тем, что вектор , направленный по нормали к поверхности в любой ее точке, ортогонален вектору поля :

                                                           () = 0.                                                (5)

Если векторная поверхность задана уравнением z = f(x,y), то вектор

(, а т.к.  направлен по касательной к , то )

и условие (5) принимает вид:

                  .                                          (3)

Если же векторная поверхность задана уравнением u(x,y,z) = 0 (неявно), т.е.

    ,

то условие (5) имеет следующий вид:

                                .                     (6)

Следовательно, для нахождения векторных поверхностей надо проинтегри-ровать квазилинейное уравнение (3) или линейное однородное уравнение (6) в зависимости от того, ищем ли мы уравнение искомых векторных поверхностей в явном или неявном виде.

    Т.к. векторные поверхности могут быть составлены из векторных линий, то интегрирование уравнений (3) или (6) сводится к интегрированию системы обыкновенных дифференциальных уравнений векторных линий (4).

Первые интегралы систем дифференциальных уравнений

Рассмотрим систему дифференциальных уравнений

                                                         .                                     (7)

Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием системы (7), но уже легко интегрирующееся, например, являющееся уравнением вида

dФ(t,) = 0

или уравнением, которое может быть сведено путем замены переменных к какому-нибудь интегрируемому типу уравнений с одной неизвестной функцией.

Пример 3.

.

Складывая обе части равенств, найдем интегрируемую комбинацию

,

т.е.

,

откуда

.

Вычитая, найдем вторую интегрируемую комбинацию

,

откуда

.

Итак,

,   .

Следовательно,

x =  y = .

    Одна интегрируемая комбинация дает возможность получить одно соотношение

Ф1 (t,) = ,

связывающее неизвестные функции и независимую переменную; такое соотношение называется первым интегралом системы (7).

     Итак, первым интегралом

                                                                                           (8)

системы уравнений (7) называется соотношение, не равное тождественно постоянной, содержащее в левой части независимую переменную и искомые функции и принимающее постоянное значение, если вместо искомых функций подставить какое-нибудь решение системы (7).

     Геометрически первый интеграл (8) при фиксированном С можно интерпретировать как n-мерную поверхность в (n+1)-мерном пространстве с координатами , обладающую тем свойством, что каждая интегральная кривая, имеющая общую точку с этой поверхностью, целиком лежит на поверхности.

    При переменном С получаем семейство непересекающихся поверхностей, состоящих из точек некоторого (n-1)-параметрического семейства интегральных кривых системы (7).

    Если найдено k интегрируемых комбинаций, то получаем k первых интегралов

                                                                                    (9)

Если все эти интегралы независимы, то есть если хотя бы один из определителей

,

где  какие-нибудь k функций из ,  не равен нулю, то из системы (9) можно выразить k неизвестных функций через остальные и, подставив в систему (7), понизить ее размер. Если k=n и все интегралы независимы, то все неизвестные функции определяются из (9).

Пример 4.

где . Умножая I-е уравнение на p, II-е на q, III-е на r и складывая, получим

.

Следовательно, I-й интеграл имеет следующий вид

.

Умножая теперь I-е уравнение на Ap, II-е на Bq, III-е на Cr и складывая, имеем

.

Следовательно, второй I-й интеграл имеет следующий вид

.

За исключением случая А=В=С, при котором система интегрируется непосредственно, найденные первые интегралы независимы и, следовательно, можно исключить две неизвестные функции, а для нахождения третьей получим одно уравнение с разделяющимися переменными.

     Для нахождения интегрируемых комбинаций часто удобно переходить к так называемой симметричной форме записи системы уравнений (7)

,

где

(t,) = .

PAGE  5


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  


 

А также другие работы, которые могут Вас заинтересовать

51406. Использование динамических структур данных 24.82 KB
  Задания по вариантам Задача 1 Сформировать однонаправленный список без заглавного звена со следующим описанием: Type telem=rel; List=^elem; Elem=record; Dt:telem; Next:List End; Описать функцию или процедуру которая: 1 определяет является ли список пустым; 2 находит среднее арифметическое элементов списка.’z’; List=^elem; Elem=record; Dt:telem; Next:List End; Описать функцию или процедуру которая: 1 определяет является ли список пустым; 2 меняет местами первый и последний элементы списка. Сформировать однонаправленный список без...