21443

Дифференциальные уравнения с частными производными первого порядка

Лекция

Математика и математический анализ

Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида: . 2 Это уравнение линейно относительно производных но может быть нелинейным относительно неизвестной функции Z. Если а коэффициенты Xi не зависят от z то уравнение 2 называется линейным однородным.

Русский

2013-08-02

170 KB

14 чел.

Лекция 16

Дифференциальные уравнения с частными производными первого порядка

    Наиболее общее уравнение с частными производными I порядка с n независимыми переменными может быть записано в виде

                                             ,                                            (1)

где F – заданная функция,  - искомая функция,  - независимые переменные.

Пример 1.   

.

Интегрируя, имеем

z(x,y) = ,

где  - произвольная функция от y.

Пример 2.

.

Интегрируя по x, получим

,

где  - произвольная функция y. Интегрируем теперь по y:

,

где  - произвольная функция от . Окончательно имеем:

z(x,y) = ,

где

                                                   -

произвольная функция.

    Из приведенных примеров видно, что общее решение дифференциального уравнения с частными производными I порядка зависит от одной произвольной функции, общее решение уравнения II порядка – от двух произвольных функций.

    Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида:

                   .           (2)

Это уравнение линейно относительно производных, но может быть нелинейным  относительно неизвестной функции Z.

Если , а коэффициенты Xi не зависят от z, то уравнение (2) называется линейным однородным.

    Рассмотрим вначале квазилинейное уравнение с двумя независимыми переменными

                      P(x, y, z) + Q(x, y, z) = R(x, y, z),                                       (3)

где P, Q, R непрерывны в некоторой области изменения переменных и не обращаются в нуль одновременно.

Рассмотрим непрерывное векторное поле

.

Векторные линии этого поля (т.е. линии, касательные к которым в каждой точке имеют направление, совпадающее с направлением вектора  в той же точке) определяются из условия коллинеарности вектора , направленного по касательной к искомым линиям, и вектора поля :

                                 =  = .                                  (4)

Поверхности, составленные из векторных линий, точнее, поверхности целиком содержащие векторные линии, имеющие хотя бы одну общую точку с поверхностью, называются векторными поверхностями.

Очевидно, векторные поверхности можно получить, рассматривая множество точек, лежащих на произвольно выбранном непрерывно зависящем от параметра однопараметрическом семействе векторных линий. Векторная поверхность характеризуется тем, что вектор , направленный по нормали к поверхности в любой ее точке, ортогонален вектору поля :

                                                           () = 0.                                                (5)

Если векторная поверхность задана уравнением z = f(x,y), то вектор

(, а т.к.  направлен по касательной к , то )

и условие (5) принимает вид:

                  .                                          (3)

Если же векторная поверхность задана уравнением u(x,y,z) = 0 (неявно), т.е.

    ,

то условие (5) имеет следующий вид:

                                .                     (6)

Следовательно, для нахождения векторных поверхностей надо проинтегри-ровать квазилинейное уравнение (3) или линейное однородное уравнение (6) в зависимости от того, ищем ли мы уравнение искомых векторных поверхностей в явном или неявном виде.

    Т.к. векторные поверхности могут быть составлены из векторных линий, то интегрирование уравнений (3) или (6) сводится к интегрированию системы обыкновенных дифференциальных уравнений векторных линий (4).

Первые интегралы систем дифференциальных уравнений

Рассмотрим систему дифференциальных уравнений

                                                         .                                     (7)

Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием системы (7), но уже легко интегрирующееся, например, являющееся уравнением вида

dФ(t,) = 0

или уравнением, которое может быть сведено путем замены переменных к какому-нибудь интегрируемому типу уравнений с одной неизвестной функцией.

Пример 3.

.

Складывая обе части равенств, найдем интегрируемую комбинацию

,

т.е.

,

откуда

.

Вычитая, найдем вторую интегрируемую комбинацию

,

откуда

.

Итак,

,   .

Следовательно,

x =  y = .

    Одна интегрируемая комбинация дает возможность получить одно соотношение

Ф1 (t,) = ,

связывающее неизвестные функции и независимую переменную; такое соотношение называется первым интегралом системы (7).

     Итак, первым интегралом

                                                                                           (8)

системы уравнений (7) называется соотношение, не равное тождественно постоянной, содержащее в левой части независимую переменную и искомые функции и принимающее постоянное значение, если вместо искомых функций подставить какое-нибудь решение системы (7).

     Геометрически первый интеграл (8) при фиксированном С можно интерпретировать как n-мерную поверхность в (n+1)-мерном пространстве с координатами , обладающую тем свойством, что каждая интегральная кривая, имеющая общую точку с этой поверхностью, целиком лежит на поверхности.

    При переменном С получаем семейство непересекающихся поверхностей, состоящих из точек некоторого (n-1)-параметрического семейства интегральных кривых системы (7).

    Если найдено k интегрируемых комбинаций, то получаем k первых интегралов

                                                                                    (9)

Если все эти интегралы независимы, то есть если хотя бы один из определителей

,

где  какие-нибудь k функций из ,  не равен нулю, то из системы (9) можно выразить k неизвестных функций через остальные и, подставив в систему (7), понизить ее размер. Если k=n и все интегралы независимы, то все неизвестные функции определяются из (9).

Пример 4.

где . Умножая I-е уравнение на p, II-е на q, III-е на r и складывая, получим

.

Следовательно, I-й интеграл имеет следующий вид

.

Умножая теперь I-е уравнение на Ap, II-е на Bq, III-е на Cr и складывая, имеем

.

Следовательно, второй I-й интеграл имеет следующий вид

.

За исключением случая А=В=С, при котором система интегрируется непосредственно, найденные первые интегралы независимы и, следовательно, можно исключить две неизвестные функции, а для нахождения третьей получим одно уравнение с разделяющимися переменными.

     Для нахождения интегрируемых комбинаций часто удобно переходить к так называемой симметричной форме записи системы уравнений (7)

,

где

(t,) = .

PAGE  5


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  


 

А также другие работы, которые могут Вас заинтересовать

21189. Криві другого порядку 454.5 KB
  Як було показано в попередній лекції загальне рівняння другого порядку в системі координат побудованій на власних векторах матриці квадратичної форми рівняння має вид 18.1 Спочатку розглянемо випадок коли це рівняння еліптичного або гіперболічного типу тобто . Якщо то рівняння 19. Якщо маємо два рівняння прямих що проходять через новий початок координат .
21190. Поверхні другого порядку 575 KB
  Розглянемо більш загальне рівняння яке містить в собі і квадратичний вираз на предмет того який геометричний обєкт воно описує.1 перетвориться у рівняння 20. В новій системі координат рівняння 20. Перепишемо рівняння 20.
21191. Матриці. Лінійні дії з матрицями. Поняття лінійного простору 207 KB
  Лінійні дії з матрицями. Вона характеризується таблицею чисел яку можна записати окремо і розглядати як суцільний обєкт що має назву матриця лат.2 Очевидно що матриця є узагальненням як числа так і вектора. Дійсно при m=1 n=1 матриця зводиться до числа при m=1 n=3 вона є векторрядок а при m=3 n=1 векторстовпець.
21192. Множення матриць. Поняття детермінанта 255.5 KB
  Множення матриць. Розглянемо якісно нову відмінну від введених в попередній лекції операцій а саме нелінійну операцію множення матриць. Визначити операцію множення матриць це означає вказати яким чином даній парі матриць ставиться у відповідність третя матриця яка і буде їх добутком.
21193. Властивості детермінантів 220.5 KB
  Детермінант транспонованої матриці дорівнює детермінанту даної. З очевидної рівності випливає що детермінант можна записати також у вигляді == =.2 Після транспонування одержимо детермінант в добутках якого індекси множників помінялись місцями.
21194. Логические модели представления знаний 99 KB
  3: sml vrt ktr tnk grz tks объекты; kls vnt krl vgr свойства. Предикаты и константы логической базы знаний Kонстанты Свойства 1 2 3 4 Колеса Винт Крыло Возит грузы kls Vnt krl vgr № Объекты Kонс танты Преди каты R kls R vnt R krl R vgr 1 Самолет sml Qsml Psml kls Psml vnt Psml krl Psml vgr 2 Вертолет vrt Qvrt Pvrt kls Pvrt vnt Pvrt krl Pvrt vgr 3 Катер Ktr Qktr Pktr kls Pktr vnt Pktr krl Pktr vgr 4 Танкер Tnk Qtnk Ptnk kls Ptnk vnt Ptnk krl Ptnk vgr 5...
21195. Алгоритмы решения логических задач 57 KB
  Используя дедуктивную логику из двух или нескольких исходных аксиом имеющихся в логической базе знаний можно вывести очередное утверждениеследствие или доказать истинность ложность целевого утверждения теоремы путем использования определенных правил вывода. Этот процесс получения новых знаний из имеющихся аксиом называют логическим выводом на знаниях. Основными типами логических задач которые решаются с использованием метода резолюций являются следующие: а задача вывода следствий в которой нужно найти все утверждения которые можно...
21196. Семантические сети представления знаний 84 KB
  Семантические сети представления знаний 9. СС это модель представления знаний в которой вся необходимая информация может быть описана в виде совокупности отношений: первый объект бинарное отношение второй объект . Эти отношения образуют иерархическую сеть в которой вершины каждого уровня знаний соединяется линиями с соответствующими вершинами верхнего и нижнего уровней. Проблема поиска решения в семантической базе знаний сводится к задаче поиска фрагмента сети подсети отражающего ответ на запрос пользователя.
21197. Фреймовые модели представления знаний 117.5 KB
  Понятие фрейма введено М. Имя таблицы является уникальным именем фрейма. Атрибуты фрейма могут также быть фреймами. У фрейма есть оболочка которая называется протофреймом прототипом образцом.