21443

Дифференциальные уравнения с частными производными первого порядка

Лекция

Математика и математический анализ

Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида: . 2 Это уравнение линейно относительно производных но может быть нелинейным относительно неизвестной функции Z. Если а коэффициенты Xi не зависят от z то уравнение 2 называется линейным однородным.

Русский

2013-08-02

170 KB

14 чел.

Лекция 16

Дифференциальные уравнения с частными производными первого порядка

    Наиболее общее уравнение с частными производными I порядка с n независимыми переменными может быть записано в виде

                                             ,                                            (1)

где F – заданная функция,  - искомая функция,  - независимые переменные.

Пример 1.   

.

Интегрируя, имеем

z(x,y) = ,

где  - произвольная функция от y.

Пример 2.

.

Интегрируя по x, получим

,

где  - произвольная функция y. Интегрируем теперь по y:

,

где  - произвольная функция от . Окончательно имеем:

z(x,y) = ,

где

                                                   -

произвольная функция.

    Из приведенных примеров видно, что общее решение дифференциального уравнения с частными производными I порядка зависит от одной произвольной функции, общее решение уравнения II порядка – от двух произвольных функций.

    Линейным неоднородным уравнением или квазилинейным уравнением I порядка в частных производных называется уравнение вида:

                   .           (2)

Это уравнение линейно относительно производных, но может быть нелинейным  относительно неизвестной функции Z.

Если , а коэффициенты Xi не зависят от z, то уравнение (2) называется линейным однородным.

    Рассмотрим вначале квазилинейное уравнение с двумя независимыми переменными

                      P(x, y, z) + Q(x, y, z) = R(x, y, z),                                       (3)

где P, Q, R непрерывны в некоторой области изменения переменных и не обращаются в нуль одновременно.

Рассмотрим непрерывное векторное поле

.

Векторные линии этого поля (т.е. линии, касательные к которым в каждой точке имеют направление, совпадающее с направлением вектора  в той же точке) определяются из условия коллинеарности вектора , направленного по касательной к искомым линиям, и вектора поля :

                                 =  = .                                  (4)

Поверхности, составленные из векторных линий, точнее, поверхности целиком содержащие векторные линии, имеющие хотя бы одну общую точку с поверхностью, называются векторными поверхностями.

Очевидно, векторные поверхности можно получить, рассматривая множество точек, лежащих на произвольно выбранном непрерывно зависящем от параметра однопараметрическом семействе векторных линий. Векторная поверхность характеризуется тем, что вектор , направленный по нормали к поверхности в любой ее точке, ортогонален вектору поля :

                                                           () = 0.                                                (5)

Если векторная поверхность задана уравнением z = f(x,y), то вектор

(, а т.к.  направлен по касательной к , то )

и условие (5) принимает вид:

                  .                                          (3)

Если же векторная поверхность задана уравнением u(x,y,z) = 0 (неявно), т.е.

    ,

то условие (5) имеет следующий вид:

                                .                     (6)

Следовательно, для нахождения векторных поверхностей надо проинтегри-ровать квазилинейное уравнение (3) или линейное однородное уравнение (6) в зависимости от того, ищем ли мы уравнение искомых векторных поверхностей в явном или неявном виде.

    Т.к. векторные поверхности могут быть составлены из векторных линий, то интегрирование уравнений (3) или (6) сводится к интегрированию системы обыкновенных дифференциальных уравнений векторных линий (4).

Первые интегралы систем дифференциальных уравнений

Рассмотрим систему дифференциальных уравнений

                                                         .                                     (7)

Интегрируемой комбинацией называется дифференциальное уравнение, являющееся следствием системы (7), но уже легко интегрирующееся, например, являющееся уравнением вида

dФ(t,) = 0

или уравнением, которое может быть сведено путем замены переменных к какому-нибудь интегрируемому типу уравнений с одной неизвестной функцией.

Пример 3.

.

Складывая обе части равенств, найдем интегрируемую комбинацию

,

т.е.

,

откуда

.

Вычитая, найдем вторую интегрируемую комбинацию

,

откуда

.

Итак,

,   .

Следовательно,

x =  y = .

    Одна интегрируемая комбинация дает возможность получить одно соотношение

Ф1 (t,) = ,

связывающее неизвестные функции и независимую переменную; такое соотношение называется первым интегралом системы (7).

     Итак, первым интегралом

                                                                                           (8)

системы уравнений (7) называется соотношение, не равное тождественно постоянной, содержащее в левой части независимую переменную и искомые функции и принимающее постоянное значение, если вместо искомых функций подставить какое-нибудь решение системы (7).

     Геометрически первый интеграл (8) при фиксированном С можно интерпретировать как n-мерную поверхность в (n+1)-мерном пространстве с координатами , обладающую тем свойством, что каждая интегральная кривая, имеющая общую точку с этой поверхностью, целиком лежит на поверхности.

    При переменном С получаем семейство непересекающихся поверхностей, состоящих из точек некоторого (n-1)-параметрического семейства интегральных кривых системы (7).

    Если найдено k интегрируемых комбинаций, то получаем k первых интегралов

                                                                                    (9)

Если все эти интегралы независимы, то есть если хотя бы один из определителей

,

где  какие-нибудь k функций из ,  не равен нулю, то из системы (9) можно выразить k неизвестных функций через остальные и, подставив в систему (7), понизить ее размер. Если k=n и все интегралы независимы, то все неизвестные функции определяются из (9).

Пример 4.

где . Умножая I-е уравнение на p, II-е на q, III-е на r и складывая, получим

.

Следовательно, I-й интеграл имеет следующий вид

.

Умножая теперь I-е уравнение на Ap, II-е на Bq, III-е на Cr и складывая, имеем

.

Следовательно, второй I-й интеграл имеет следующий вид

.

За исключением случая А=В=С, при котором система интегрируется непосредственно, найденные первые интегралы независимы и, следовательно, можно исключить две неизвестные функции, а для нахождения третьей получим одно уравнение с разделяющимися переменными.

     Для нахождения интегрируемых комбинаций часто удобно переходить к так называемой симметричной форме записи системы уравнений (7)

,

где

(t,) = .

PAGE  5


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  


 

А также другие работы, которые могут Вас заинтересовать

83421. «Риторика та поезія» С.Я. Маршак 28.5 KB
  Реалізувати пропедевтичні знання про поетичну творчість дитячого поета С.Я. Маршака через методи інтерактивного навчання, розвивати уміння відрізняти риторичні не словесні засоби спілкування від літературних (поетичних)засобів, закріплювати уміння декламувати вірш з риторичними засобами...
83422. Здається, байка просто бреше, а справді ясну правду чеше. Л.Глібов «Лебідь, Щука і Рак», «Коник-стрибунець» 37 KB
  Ознайомити дітей із жанром байки; розвивати способи і види читання байки вчити передавати в інтонації характери дійових осіб оцінювати їхні вчинки виявляти мотиви їхньої поведінки; виховувати в дітей товариськість любов до праці. Сьогодні ми ознайомимося з новим розділом Байки.
83423. У різні пори року приваблива земля 237.5 KB
  У зелених пишних шатах у яскравому вінку прийшла до нас весна. Не забула весна заглянути і в ліс посіяла там травицю пролісками заквітчала галявини задзвеніла піснями пташок. Весна стала господаркою і в нашому краї а земля дочекалася працелюбних рук.
83424. Два різних світи – одне ціле. Програма виховної роботи 340 KB
  Дорослішання сучасної молоді відбувається в складних умовах. Нестабільність сімейного інституту, неактуальність традиційної підготовки молоді до шлюбу диктують необхідність використання спеціальних заходів для надання допомоги дітям в усвідомленні своєї статевої приналежності, формування адекватного...
83425. Розважально-пізнавальна програма. Сім’Я. Сім’Я. Сім’Я 105 KB
  А зараз з великим задоволенням разом рушимо вперед. Кожному з вас доведеться сім разів проявити себе. Оскільки в сім’ї тільки починає складатися життєвий досвід дитини, тому, проявляючи своє Я, він має право звернутися по допомогу або до мами, або до тата, а, може, і до обох відразу.
83429. Сценарій ДЮП «Прометей» 41.5 KB
  Але жарке, палюче сонце обпекло молоде листячко і маленька, настирлива іскорка починає свою гру. Пожежу ще можна попередити, якщо засипати вогнище піском. 10 година 12 хвилин. Вітер переносить полум’я на сусідні дерева, вогонь ще можна загасити водою, але гілки дерев уже сплелись...