21444

Дифференциальные уравнения векторных линий

Лекция

Математика и математический анализ

Выделим из двухпараметрического семейства векторных линий называемых характеристиками уравнения 3 или 6 предыдущей лекции PxyzQxyz=Rxyz3 6 произвольным способом однопараметрическое семейство устанавливая какуюнибудь произвольную непрерывную зависимость между параметрами С1 и С2 . Тем самым найден интеграл квазилинейного уравнения 3 предыдущей лекции зависящий от произвольной функции. Если требуется найти не произвольную векторную поверхность поля а поверхность проходящую через заданную линию...

Русский

2013-08-02

218 KB

5 чел.

Лекция 17

Характеристики

     Вернемся к системе дифференциальных уравнений векторных линий

                       =  = .                                  (1)

Пусть  - два независимых I-х интеграла системы (1). Выделим из двухпараметрического семейства векторных линий

,

называемых характеристиками уравнения (3) (или (6)) предыдущей лекции

(P(x,y,z)+Q(x,y,z)=R(x,y,z)(3),  (6)) произвольным способом однопараметрическое семейство, устанавливая какую-нибудь (произвольную) непрерывную зависимость  между параметрами С1 и С2 . Исключая из системы

параметры С1 и С2 , получаем искомое уравнение векторных поверхностей

                                 ,                                               (2)

где - произвольная функция. Тем самым найден интеграл квазилинейного уравнения (3) предыдущей лекции, зависящий от произвольной функции.

    Если требуется найти не произвольную векторную поверхность поля

,

а поверхность, проходящую через заданную линию, определяемую уравнениями , то функция в (2) будет уже не произвольной, а определится путем исключения переменных x,y,z из системы уравнений

,

которые должны одновременно удовлетворяться в точках заданной линии , через которую мы проводим характеристики, определяемые уравнениями .

     Задача станет неопределенной, если заданная линия  является характеристикой, т.к. в этом случае эту линию можно включить в различные однопараметрические семейства характеристик и тем самым получить различные интегральные поверхности, проходящие через эту линию.

    Таким образом, характеристики – это кривые, через которые проходит бесконечное множество интегральных поверхностей.

    Итак, интеграл квазилинейного уравнения

                               P(x,y,z)+Q(x,y,z)=R(x,y,z),                             (3)

Зависящий от произвольной функции, может быть получен следующим образом: интегрируем вспомогательную (эквивалентную) систему обыкновенных дифференциальных уравнений

                                   =  =                                 (1)

и, найдя, два независимых первых интеграла этой системы

,

получаем искомый интеграл в виде , где - произвольная функция.

     Уравнение интегральной поверхности уравнения (3), проходящей через заданную линию , можно найти, если взять функцию не произвольно, а определив функцию  путем исключения x,y,z из уравнений

,

в результате чего получим уравнение , и искомым интегралом будет .

Пример 1.

Найти общий интеграл уравнения

                                               .

Вспомогательная система уравнений имеет вид:

                                                .

Ее первые интегралы: . Общий интеграл: , где - произвольная функция.

Пример 2.

Найти интегральную поверхность уравнения

                                            ,

проходящую через кривую . Интегрируем систему

                                            .

Имеем первые интегралы: . Исключая x,y,z из уравнений

                       ,   ,

получим , откуда   .

Пример 3.

Найти интегральную поверхность того же уравнения, проходящую через окружность

                                               .                                             (4)

Заданная кривая является одной из векторных линий (характеристик), таким образом, задача неопределена. Действительно, интегральными поверхностями рассматриваемого уравнения являются всевозможные поверхности вращения , ось которых совпадает с осью Оz. Существует бесконечное множество таких поверхностей, проходящих через окружность (4), например, параболоиды вращения   , сфера  и т.д.   

                                        

Линейные однородные дифференциальные уравнения в частных производных I порядка с n независимыми переменными

     Рассмотрим уравнение вида

                ,           (1)

где - заданные функции, непрерывные и дифференцируемые в рассматриваемой области изменения независимых переменных  искомая функция. Наряду с уравнением (1) запишем систему обыкновенных дифференциальных уравнений

                                                ,                                              (2)        

которую будем называть соответствующей уравнению (1).

     Задачи интегрирования уравнения (1) и системы (2) эквивалентны. Имеет место следующая

Теорема 1. Левая часть любого первого интеграла системы (2) есть решение уравнения (1); обратно, всякое решение уравнения (1), приравненное произвольной постоянной, дает первый интеграл системы (2).

Доказательство. Пусть

- совокупность (n-1) независимых первых интегралов системы (2). В пространстве с координатами эта система интегралов определяет (n-1)- параметрическое семейство линий – характеристик уравнения (1). Докажем сначала первое утверждение теоремы.

Вдоль любой интегральной кривой  системы (2) имеем

                               .                           (3)

Но вдоль интегральной кривой системы (2) дифференциалы  пропорциональны функциям , следовательно, в силу однородности относительно  левой части тождеств

дифференциалы  могут быть заменены пропорциональными им величинами , при этом получим, что вдоль интегральных кривых системы (2)

                                       .                                     (4)

Интегральные кривые системы (2) проходят через каждую точку рассматриваемой области изменения переменных  (в силу теоремы существования), и левая часть (4) не зависит от постоянных  и, следовательно, не меняется при переходе от одной интегральной кривой к другой, значит, тождества (4) справедливы не только вдоль некоторой интегральной кривой, но и во всей рассматриваемой области изменения переменных , а это и означает, что функция  является решением исходного уравнения

                                            .                                                           (1)  

Обратно, пусть некоторая функция  обращает уравнение (1) в тождество (во всей области изменения переменных ):

                                       .                                                         (4а)

Поскольку вдоль любой интегральной кривой системы (2)  и  пропорциональны, то

                                             ,

а следовательно  вдоль интегральной кривой, а это значит (в силу теоремы единственности), что  есть первый интеграл системы (2) (по определению). Ч.т.д.

Теорема 2. , где - произвольная функция, - независимые первые интегралы системы (2), является общим решением уравнения (1), т.е. решением, содержащим все без исключения решения этого уравнения.

Доказательство. Пусть  есть некоторое решение уравнения (1). Докажем, что существует функция , такая, что . Так как  являются решениями уравнения (1), то

                                                                                               (5)

Однородная система (5) в каждой точке  рассматриваемой области имеет нетривиальное решение, т.к.  по предположению не обращаются в нуль одновременно. Поэтому определитель

тождественно равен нулю в рассматриваемой области. Но это означает, что между функциями  имеется функциональная зависимость

                                                   .                                        (6)

В силу независимости первых интегралов  системы (2) по крайней мере один из миноров (n-1)-го порядка якобиана

                                                      

вида

                                                             

отличен от нуля. Следовательно, уравнение (6) можно представить в виде

                                                     .

Ч.т.д.

Пример 4.

Проинтегрировать уравнение

.

Система уравнений характеристик

имеет следующие независимые первые интегралы

.

Общее решение исходного уравнения имеет, таким образом, следующий вид

и является произвольной однородной функцией нулевой степени однородности.

PAGE  5


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  


 

А также другие работы, которые могут Вас заинтересовать

2248. Эффективность разработки электронного изделия 530.79 KB
  Определение затрат на материалы и комплектующие изделия. Определение основных показателей технологичности. Технико-экономические расчёты по определению ресурсов. Разработка сетевого графика технической подготовки производства нового изделия. Определение технико-экономических показателей производства.
2249. Разработка организационной структуры управления объектом сферы услуг, как целеустремленной системой на примере блинной Солнцепек 143.39 KB
  Теоретические основы методологии системного анализа. Системный анализ и моделирование объекта исследования. Предложения по совершенствованию устойчивости функционирования системы.
2250. Проектирование понизительной подстанции электроснабжения электрифицированной железной дороги. 1.13 MB
  Распределительное устройство 110 кВ промежуточной транзитной подстанции. Составление расчетной схемы и схемы замещения. Расчёт токов короткого замыкания. Выбор основного оборудования и токоведущих элементов подстанции. Выбор устройств защиты от перенапряжения.
2251. Сервисный центр по ремонту и обслуживанию офисной техники с использованием средств Microsoft Access 991.23 KB
  Описание бизнес-процесса при помощи методологии структурного анализа и проектирования (SADT). Создание форм с помощью конструктора. Структура таблицы и типы данных.
2252. Мероприятие: В стране невыученных уроков 19.84 KB
  Внеклассное мероприятие посвященное ко дню учителя, отображающее учеников которые не хотят учить уроки.
2253. Экономическая теория прав собственности 16.42 KB
  Современная экономическая теория получила развитие направление называемое неоинституционализм. Одним из важнейших направлений этого подхода является экономическая теория прав собственности. У истоков стоял такой известнейший экономист Рональд Коуз.
2254. Экономическое право 17.74 KB
  Право собственности на природные ресурсы. Право природного пользования. Правовые формы использования природных ресурсов.
2255. Строительная механика. Специальный курс. Применение метода граничных элементов 6.82 MB
  В учебном пособии изложен новый метод расчета статически определимых и статически неопределимых стержневых и пластинчатых систем на статические и динамические нагрузки, а также на устойчивость. Приведено большое количество характерных типовых задач и примеров с краткими указаниями к их решению. Значительное место уделено математической постановке задач и их решению с помощью персональных компьютеров.
2256. Гласные звуки. Деление слова на слоги. Слогообразующая роль гласных звуков 18.21 KB
  Цели: познакомить учащихся с понятием слог, научить детей делить слова на слоги, развивать речь, внимание, память, воспитывать трудолюбие, аккуратность в работе.