21445

Приведение матрицы линейного оператора к канонической (жордановой) форме

Лекция

Математика и математический анализ

Вектор называется присоединенным вектором оператора соответствующим собственному значению если для некоторого целого выполняются соотношения . Иными словами если присоединенный вектор порядка то вектор является собственным вектором оператора . Существует базис 1 образованный из собственных и присоединенных векторов оператора в котором действие оператора дается следующими соотношениями:...

Русский

2013-08-02

623.5 KB

11 чел.

Приведение матрицы линейного оператора

к канонической (жордановой) форме.

Определение.

Вектор  называется присоединенным вектором оператора , соответствующим собственному значению , если для некоторого целого  выполняются соотношения

, .

При этом число  называется порядком присоединеного вектора .

Иными словами, если  - присоединенный вектор порядка , то вектор

является собственным вектором оператора .

Имеет место следующая

Теорема.

Пусть - линейный оператор, действующий в -мерном евклидовом пространстве .

Существует базис

,                                           (1) образованный из собственных и присоединенных векторов оператора, в котором действие оператора  дается следующими соотношениями:

                                         (2)

 

Замечание 1.

Очевидно, векторы   базиса (1) являются собственными векторами оператора, соответствующими собственным значениям .

Из определения присоединенных векторов и соотношения (2) следует, что векторы    являются присоединенными векторами порядка , соответствующими собственным значениям .

(Так как ).

Замечание 2.

Поскольку по определению линейного оператора

                                     , ,                                  (3)

то соотношения (2) действительно определяют действие оператора  в пространстве  при заданном базисе .

Замечание 3.

Матрица  линейного оператора  в базисе  имеет следующий клеточный вид ,                                                                   (4)

где клетка  представляет собой следующую матрицу

 

                        .                                                    (5)

Замечание 4.

Форма (4) матрицы  линейного оператора  называется жордановой формой матрицы этого оператора.  называется жордановой клеткой матрицы .

Замечание 5.

Жорданова форма (4) матрицы определена с точностью до порядка расположения клеток , который определяется порядком нумерации собственных значений .

Доказательство.

Применим метод индукции.

При  утверждение теоремы очевидно.

Пусть  и теорема верна для пространств размерности, меньшей .

Докажем, что при этом предположении она верна и для пространств размерности .

Пусть  - собственное значение оператора, т.е.  является корнем характеристического уравнения . Таким образом, ранг  линейного оператора

                                                                                                   (6)

меньше  

Линейный оператор  отображает пространство  на подпространство . Поэтому оператор  отображает подпространство  размерности  в это же подпространство (для  линейного оператора   и  - инвариантные подпространства оператора , т.е. если , то и ).

По предположению индукции в  есть базис

,  ,                                              (7)

в котором действие оператора  из  задается соотношениями

                                            ,

                          ,  .                       (8)

Таким образом, в этом базисе матрица  оператора  (символом  обозначается оператор , действующий из  в ), действующего из  в , имеет следующий клеточный вид:

                  ,    .               (9)

Пусть лишь первые   собственных значений оператора  равны нулю.

Так как ранг каждой клетки (см. (9)), для которой , равен , а ранг клетки, для которой , равен , то, согласно (7), ранг матрицы  равен . Поэтому размерность пространства  равна  , но , следовательно  и  представляет собой линейную оболочку векторов . Эти векторы в силу линейной независимости образуют базис в. Очевидно, . Дополним базис  в  до базиса в  векторами , ,  (размерность  равна ).

Так как , то

                                                     .                                                (10)

Обратимся теперь к векторам , . Поскольку эти векторы принадлежат , то существуют такие векторы , что

                                            , .                                    (11)

Докажем теперь, что векторы

                               ,

                                     ,                                   (12)

линейно независимы.

Рассмотрим следующую равную нулю линейную комбинацию  этих векторов:

                                              (13)

и подействуем оператором  на , тогда, с учетом (8), (10) и (11), получим:

                  .           (14)

Полученное соотношение представляет собой равную нулю линейную комбинацию базисных векторов , поэтому коэффициенты при указанных векторах в рассматриваемой линейной комбинации равны нулю. Поскольку  при , то из (14) следует, что коэффициенты при   равны в точности , следовательно, . Отсюда и из соотношения (13) имеем

                                   ,                               (15)

из которых следует, что вектор , представляющий собой линейную комбинацию векторов , составляющих часть базиса в , сам принадлежит.

С другой стороны, из (15) вытекает, что  представляет собой линейную комбинацию векторов , т.е. . Следовательно,   (так как ), и поэтому .

Так как линейные оболочки наборов векторов  и  имеют общим лишь нулевой элемент (эти наборы вместе образуют базис в ) и поскольку  принадлежит каждой из упомянутых  линейных оболочек, то  Но тогда из (15) следует, что   и   .

Итак, все коэффициенты в линейной комбинации (13) векторов (12) равны нулю, т.е. векторы (12) линейно независимы. 

Общее число векторов (12) равно . Так как  (это было установлено выше), то общее число векторов (12) равно , т.е. они образуют базис в . Обозначим

                                                                                                     (16)

и запишем векторы этого базиса в следующей последовательности серий:

                                     

                                     , ;                             (17)

                                    ,  

Рассмотрим действие оператора  на векторы базиса (17). В соответствии с (8), (10), (11) и (16) имеем

, ,

, ,

, ,

,  , .

Таким образом, в базисе (17) оператор  действует по правилу (2), указанному в формулировке теоремы. Но тогда в этом базисе и оператор  действует по тому же правилу. Теорема доказана.                   

Пример 1.

В некотором базисе матрица оператора  имеет вид .

Построим жорданов базис*).

.

,

 , , т.е. , ,

, т.е. .

Если , то ,

*) Пусть  - корень характеристического уравнения   кратности , а  - ранг матрицы , тогда количество линейно независимых собственных векторов равно , а присоединенных .

, т.е. , ; ,

; ,

таким образом, .

Пример 2.

 

   1 собственный вектор и 2 присоединенных.

, , т.е.

.

          

; ;

   

,  ;

;  

 те же векторы, что и у , но

, поэтому вектор  ищем из уравнения ,

т.е.

    или   

Итак, так как , то .

 

 

        

     

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

PAGE  7


 

А также другие работы, которые могут Вас заинтересовать

63369. Методика как научная и педагогическая дисциплина 247.5 KB
  Предмет цели и задачи методики преподавания информатики МПИ. Вместе с введением в школу общеобразовательного предмета Основы информатики и вычислительной техники началось формирование новой области педагогической науки...
63370. Управление процессами разработки и эксплуатации нефтяных месторождений. Цели, методы, системный принцип 2.61 MB
  Так к технологическим факторам относятся: 1 сетка скважин; 2 система заводнения; 3 предельные давления и дебиты скважин и проч. Мероприятия по управлению процессами разработки основываются на результатах анализа данных мониторинга и гидродинамических исследований скважин...
63371. Гiсторыя Беларусi. Уводзiны 74 KB
  Гісторыя Беларусі як вучэбная дысцыпліна яе прадмет метады і задачы курса. Ластоўскі ў кнізе Кароткая гісторыя Беларусі выдадзенай у 1910 годзе. Нельга не адзначыць што на працягу многіх стагоддзяў спачатку польскія а затым расейскія і савецкая гісторыкі...
63372. Устройства сканирования 291.5 KB
  Рынок сканеров достаточно разнообразен в разных категориях различающихся по техническим и стоимостным показателям. Переходя к принципам отбора наиболее подходящего сканера прежде всего надо дать себе отчет в том что сканер даже планшетный...
63373. Сканеры. Принцип сканирования 1.15 MB
  Разрешение сканирования scаnning resolution является основной характеристикой сканера и указывает сколько пикселов изображения может вводить сканер на единицу площади оригинала.
63374. Экология и устойчивое развитие 164.5 KB
  Уровни организации живых организмов. Уровни организации живых организмов. Индикационное значение организмов. Некоторые свойства коацерватов внешне сходны со свойствами живых организмов.
63375. Понятие нотариата 28.55 KB
  Предмет нотариальной деятельности только бесспорные дела в отличие от судебной деятельности предметом которой по преимуществу являются споры о материальном в частности гражданском праве.
63376. ИСТОРИЯ И СОСТОЯНИЕ РАЗВИТИЯ БД 363.5 KB
  Вопросы информатизации Краткая история развития технических средств для хранения и ввода данных в ЭВМ Развитие средств хранения Развитие концепции БД Современные информационные технологии...