21446

Обыкновенные дифференциальные уравнения

Лекция

Математика и математический анализ

Функция называется решением (или интегралом) д.у., если она раз непрерывно дифференцируема на некотором интервале и при удовлетворяет уравнению. Процесс нахождения решения д.у. называется его интегрированием...

Русский

2013-08-02

438.5 KB

4 чел.

Лекция 1.

Обыкновенные дифференциальные уравнения.

Общие понятия. Примеры.

Обыкновенными дифференциальными уравнениями (о.д.у.) называются уравнения вида:

                                                      (1)

где -известная функция,  независимая переменная,  неизвестная функция.

Порядком дифференциального уравнения (д.у.) называется наивысший порядок производной функции , входящей в уравнение.

Функция   называется решением (или интегралом) д.у. (1), если она  раз непрерывно дифференцируема на некотором интервале  и при  удовлетворяет уравнению. Процесс нахождения решения д.у. называется его интегрированием .

Пример 1. Пусть  непрерывная на интервале  функция ,  её первообразная, тогда

                                                                                (2)

т.е. для отыскания первообразной мы имеем о.д.у. I-ого порядка. Его решения:

          ,        

где   произвольная постоянная.

Д.у. (2) имеет бесчисленное множество решений и это справедливо для всех о.д.у. Чтобы выделить единственное решение уравнения (2), достаточно задать значение первообразной   в какой-либо точке, например, . Тогда решение единственно и равно

             

Основные элементарные функции являются решениями о.д.у.

Пример 2.

Уравнение:

                                                                     (3)   

имеет решения  что легко проверить. Функция  удовлетворяет условиям  а  удовлетворяет условиям

К о.д.у. приводят многие задачи естествознания.

Пример 3.

Движение материальной точки массы  описывается II законом Ньютона . Если точка движется по оси  и - её положение в момент времени , то функция  удовлетворяет о.д.у. II-ого порядка:

                                                          (4)

Чтобы найти единственное решение уравнения (4), необходимо  задать начальные данные

                                                               (5)

  Если задача об отыскании всех решений о.д.у. сводится к вычислению конечного числа интегралов и производных от известных функций и к алгебраическим операциям, то говорят, что уравнение интегрируется в квадратурах. Класс таких уравнений узок, Поэтому для исследования д.у. как правило применяются приближенные и численные методы.

         Пример 4.

Модель типа хищник-жертва. Рассмотрим динамику популяции 2-х видов, взаимодействующих между собой по типу хищник-жертва. При этом предполагается, что жертва может найти достаточно пищи, но и при каждой встрече с хищником последний убивает жертву.

Пусть  и - соответственно количество жертв и хищников в момент времени . Пусть также коэффициент рождаемости жертв  и коэффициент естественной смертности (т.е. без учета уничтожения хищником)  являются константами, причем . Таким образом, в отсутствие хищников популяция жертв будет расти  со скоростью . Кроме того, предположим, что число случаев, когда хищник убивает жертву зависит от вероятности их встречи и, следовательно, пропорционально произведению .

Таким образом, популяция жертв удовлетворяет следующему д.у.:

где   , а

Относительно хищников предположим, что их число при отсутствии жертв по естественным причинам убывает со скоростью . В результате  встреч с жертвами число хищников увеличивается. Таким образом, имеем уравнение:

 

где   , а

Итак, модель хищник-жертва сводится к системе 2-х нелинейных о.д.у.

                                                   (a)

0, 0, 0, 0. Это уравнения Лотки-Вольтерра. Система должна быть дополнена начальными условиями

 .                                                               (b)

Явное аналитическое решение задачи (a), (b) неизвестно. Рассмотрим метод решения этой задачи, основанный на теории возмущений.

Первый шаг состоит в нахождении стационарных состояний (, ) или точек равновесия. Эти точки находятся из условий:

 

откуда

.                                                  (с)

Кроме того, точкой равновесия будет так называемое тривиальное решение или точка покоя

     .

Разложим правые части уравнений (а) в ряды Тейлора в окрестности точки (,). С учетом (с) получим

 .

Таким образом, в окрестности этой точки исходные уравнения (а) можно аппроксимировать линейными

                                                                      (d)

Положим

      

Тогда система (d) примет вид:

                                                                           (e)

Продифференцируем по t, например, I-е уравнение  и подставим в него второе

                  .

Легко проверить, что общим решением этого уравнения является

                      ,                                       (f)

где  и  - const, определяемые из начальных условий (b). Из (e) получаем:

                       .                  (g)

Исключая из (f) и (g) время, имеем:

                                       

Возвращаясь к исходным обозначениям

                          ,                                                   (h)   

где мы обозначили.

Соотношение (h) – это уравнение эллипсов (в зависимости от с2, т.е. от начальных условий) с центром в точке ).

Стрелки указывают направление, соответствующее возрастанию времени. Из (d) видно, что при , растет  (т.к. >0) и наоборот.

Видно, что изменение популяций носит циклический характер: через определенное время популяция возвращается к первоначальному уровню.

Уравнения первого порядка, разрешенные относительно производной.

      Такого рода уравнение имеет вид:

                                                                                     (6)

В дальнейшем будет доказано, что при некоторых ограничениях, налагаемых на функцию  уравнение (6) имеет единственное решение, удовлетворяющее условию:

                                      .

Его общее решение, содержащее все без исключения решения, зависит от одной произвольной постоянной.

Дифференциальное уравнение  устанавливает зависимость между координатами точки и угловым коэффициентом касательной  к графику решения в этой точке. Зная x и y, можно вычислить . Следовательно, дифференциальное уравнение рассматриваемого вида определяет поле направлений и задача интегрирования д.у. заключается в том, чтобы найти кривые, называемые интегральными кривыми1, направление касательных, к которым в каждой точке совпадает с направлением поля. Пример 5.

                          

Для построения поля направлений найдем геометрическое место точек, в которых касательные к искомым интегральным кривым сохраняют постоянное значение. Такие линии называются изоклинами. Уравнение изоклин получим, считая, что

                                ,

где k- постоянная. Таким образом,

                        ,

т.е. в данном случае изоклинами являются окружности с центром в начале координат, причем угловой коэффициент касательной к искомым интегральным кривым равен радиусу этих окружностей. Для построения поля направлений дадим постоянной k некоторые определенные значения. После этого можно приближенно провести искомые интегральные кривые.

      Пример 6.

                          

Изоклинами являются гиперболы или причем при k=1 гипербола распадается на пару прямых x=0 и y=0. При k=0 получаем изоклину ; эта гипербола разбивает плоскость на

части, в каждой из которых y сохраняет постоянный знак. Интегральные кривые  пересекая гиперболу

переходят из области возрастания функции y(x) в область её убывания или наоборот, и, следовательно, на ветвях этой гиперболы расположены точки максимума и минимума интегральных кривых.

Определим теперь знаки второй производной в различных областях плоскости:

    или        

Кривая    или

                          (7)

разбивает плоскость на две части, в одной из которых y<0, и, следовательно, интегральные кривые выпуклы вверх, а в другой y>0, и значит, инте

гральные кривые выпуклы вниз. При переходе через кривую (7)

интегральные кривые переходят от выпуклости к вогнутости, и, следовательно, на этой кривой расположены точки перегиба интегральных кривых.

В результате проведенного исследования известны области возрастания и убывания интегральных кривых, известно расположение точек максимума и минимума, известны области выпуклости и вогнутости и расположение точек перегиба, известна изоклина k=1. Этих сведений вполне достаточно для того, чтобы сделать набросок расположения интегральных кривых.

      Рассмотрим некоторые уравнения I порядка, которые интегрируются в квадратурах.

  1.  Уравнение с разделяющимися переменными.

Это уравнения вида:

                         

                                                                                     (13)

будем считать, что функции ,   непрерывны при , а, кроме того ,  т.к. если при , , то из (13) следует, что  есть решение.

Запишем уравнение (13) в виде:

                   

и проинтегрируем

                                                                     (14)

это и есть общее решение уравнения (13).

Пример 7.

                   .

Здесь

          ,

так что , где С - произвольная постоянная. Есть еще решение y0.

Решением задачи Коши

при  

здесь будет:

 .

  1.  Уравнения, приводящиеся к уравнениям с разделяющимися переменными.

а) Рассмотрим уравнение

 ,

где  .

Перейдем к новым переменным , в результате получим

                    т.е.       

или

       

т.е. переменные разделились. Интегрируя, получим:

                   

б) Рассмотрим теперь однородное д.у. I порядка

     

однородная функция нулевого порядка, т.е.  

                 

Положим , т.е. , тогда

 

  .   

в) Уравнение вида

 

будет однородным, если

 ,

т.е. ,однородные функции одного порядка, (), и будет уравнением с разделяющимися переменными, если

                       .

1) Пусть  –это решение уравнения (6) на отрезке [a,b] оси х. График этой функции   называется интегральной кривой уравнения (6).


 

А также другие работы, которые могут Вас заинтересовать

82442. Категория вежливости в устных и письменных межкультурных коммуникациях 33.58 KB
  В английском языке слова используемые для выражения вежливости имеют более тонкие оттенки нежели в русском. Например слово конечно звучит нейтрально и даже дружескив английском же of course звучит слишком категорично и имеет подтекст странночто вы этого не знаете лучше говорить sure . Гид не знал что в английском этикете ответ of course имеет подтекст Странночто вы не знаете этих вещей . В английском и французском использование подобных средств воспринимается как приказ и подобные вещи выражаются более мягким способомблизким к...
82443. Ведущая роль лексико-семантической системы в формировании ЯКМ 28.96 KB
  Российский лингвист Евгений Михайлович Верещагин основатель лингвострановедения писал в отличии от языковой системы которая не связана непосредственно с культурой словарь обнаруживает непосредственную зависимость от культуры поэтому лексический состав определенного языкового коллектива следует изучать исходя из культуры Наиболее наглядно характер языковой картины мира представлен в лексике ведь именно благодаря ей возможно членение действительности выделение в...
82444. Феминизация лексических изменений в европейских языках 31.66 KB
  Под давлением некоторых организаций правительство Франции 23 февраля 2012 года приняло постановление об ограничении употребления слова mdemoiselle . В современной Франции обращение mdemoiselle воспринимается как комплименттак как подразумеваетчто женщина молода и свободна но существует также давняя театральная традиция обращаться к известным актрисам mdemoiselle . Представительницы феминисткой группы в сентябре 2011 года развернули активные кампании против слова mdemoiselle заявив что оно является оскорбительным и подразумевает...
82445. Место и роль гипер-гипонимических отношений в формировании языковой картины мира 34.75 KB
  Гиперонимы и гипонимы Синонимические ряды Большую роль в формировании ЯКМ играют гиперонимы и гипонимы. Гиперонимы слова с широким родовым значением например véhicule m транспортное средство передвижения Гипонимы слова с конкретным точечным значение например слово рука в русском языке это гипероним а во французском существуют гипонимы min f кисть руки brs m рука от плеча до кисти.Спортивные мероприятия ctivités sportives Существуют гипонимы которые передаются целым предложением.
82446. Способы передачи французских фразеологизмов на русский язык 33.1 KB
  Возможность полноценной передачи фразеологизмов зависит в основном от соотношений между их единицами во французском и русском языках. При этом существуют 3 способа передачи французских фразеологизмов на русский язык: Французский фразеологизм имеет в русском языке точное независящее от контекста полноценное соответствие.
82447. Связь языка и культуры, характер связи 30.71 KB
  Язык это явление культуры. Именно благодаря языку человек осознаёт себя как своё я выделяет себя из внешнего мира тем самым отличаясь от животных. Язык единственное средство связи между разными поколениями именно благодаря ему мы усваиваем культуру прошлых поколений.
82448. Отражение национально-культурного различия в фразеологизмах 33.45 KB
  Хотя французы и говорят что одежда не делает монаха они встречают незнакомца нередко именно по одёжке hbillé comme un mnnequin манекен; 3. Понастоящему образованным считается тот кто в совершенстве владеет родным языком prler comme un livre un orcle un nge 4. Неслучайно имеются фразеологизмы с опорным словом rire rire comme une bleine кит comme un gmin gosse ребенок ; 5.
82449. Вильгельм Гумбольдт о связи языка и культуры 30.64 KB
  Одним из первых учёных обратившихся к проблеме взаимоотношения языка и культуры был Вильгельм фон Гумбольдт17671835основатель учения о ЯКМ. Поражает его лингвистический кругозор: владел языками разных лингвистических семей венгерский санскрит китайский испанский французский языки американских индейцев. Высказал мнение что характер связи языка и мышления глубок и противоречив.