21446

Обыкновенные дифференциальные уравнения

Лекция

Математика и математический анализ

Функция называется решением (или интегралом) д.у., если она раз непрерывно дифференцируема на некотором интервале и при удовлетворяет уравнению. Процесс нахождения решения д.у. называется его интегрированием...

Русский

2013-08-02

438.5 KB

3 чел.

Лекция 1.

Обыкновенные дифференциальные уравнения.

Общие понятия. Примеры.

Обыкновенными дифференциальными уравнениями (о.д.у.) называются уравнения вида:

                                                      (1)

где -известная функция,  независимая переменная,  неизвестная функция.

Порядком дифференциального уравнения (д.у.) называется наивысший порядок производной функции , входящей в уравнение.

Функция   называется решением (или интегралом) д.у. (1), если она  раз непрерывно дифференцируема на некотором интервале  и при  удовлетворяет уравнению. Процесс нахождения решения д.у. называется его интегрированием .

Пример 1. Пусть  непрерывная на интервале  функция ,  её первообразная, тогда

                                                                                (2)

т.е. для отыскания первообразной мы имеем о.д.у. I-ого порядка. Его решения:

          ,        

где   произвольная постоянная.

Д.у. (2) имеет бесчисленное множество решений и это справедливо для всех о.д.у. Чтобы выделить единственное решение уравнения (2), достаточно задать значение первообразной   в какой-либо точке, например, . Тогда решение единственно и равно

             

Основные элементарные функции являются решениями о.д.у.

Пример 2.

Уравнение:

                                                                     (3)   

имеет решения  что легко проверить. Функция  удовлетворяет условиям  а  удовлетворяет условиям

К о.д.у. приводят многие задачи естествознания.

Пример 3.

Движение материальной точки массы  описывается II законом Ньютона . Если точка движется по оси  и - её положение в момент времени , то функция  удовлетворяет о.д.у. II-ого порядка:

                                                          (4)

Чтобы найти единственное решение уравнения (4), необходимо  задать начальные данные

                                                               (5)

  Если задача об отыскании всех решений о.д.у. сводится к вычислению конечного числа интегралов и производных от известных функций и к алгебраическим операциям, то говорят, что уравнение интегрируется в квадратурах. Класс таких уравнений узок, Поэтому для исследования д.у. как правило применяются приближенные и численные методы.

         Пример 4.

Модель типа хищник-жертва. Рассмотрим динамику популяции 2-х видов, взаимодействующих между собой по типу хищник-жертва. При этом предполагается, что жертва может найти достаточно пищи, но и при каждой встрече с хищником последний убивает жертву.

Пусть  и - соответственно количество жертв и хищников в момент времени . Пусть также коэффициент рождаемости жертв  и коэффициент естественной смертности (т.е. без учета уничтожения хищником)  являются константами, причем . Таким образом, в отсутствие хищников популяция жертв будет расти  со скоростью . Кроме того, предположим, что число случаев, когда хищник убивает жертву зависит от вероятности их встречи и, следовательно, пропорционально произведению .

Таким образом, популяция жертв удовлетворяет следующему д.у.:

где   , а

Относительно хищников предположим, что их число при отсутствии жертв по естественным причинам убывает со скоростью . В результате  встреч с жертвами число хищников увеличивается. Таким образом, имеем уравнение:

 

где   , а

Итак, модель хищник-жертва сводится к системе 2-х нелинейных о.д.у.

                                                   (a)

0, 0, 0, 0. Это уравнения Лотки-Вольтерра. Система должна быть дополнена начальными условиями

 .                                                               (b)

Явное аналитическое решение задачи (a), (b) неизвестно. Рассмотрим метод решения этой задачи, основанный на теории возмущений.

Первый шаг состоит в нахождении стационарных состояний (, ) или точек равновесия. Эти точки находятся из условий:

 

откуда

.                                                  (с)

Кроме того, точкой равновесия будет так называемое тривиальное решение или точка покоя

     .

Разложим правые части уравнений (а) в ряды Тейлора в окрестности точки (,). С учетом (с) получим

 .

Таким образом, в окрестности этой точки исходные уравнения (а) можно аппроксимировать линейными

                                                                      (d)

Положим

      

Тогда система (d) примет вид:

                                                                           (e)

Продифференцируем по t, например, I-е уравнение  и подставим в него второе

                  .

Легко проверить, что общим решением этого уравнения является

                      ,                                       (f)

где  и  - const, определяемые из начальных условий (b). Из (e) получаем:

                       .                  (g)

Исключая из (f) и (g) время, имеем:

                                       

Возвращаясь к исходным обозначениям

                          ,                                                   (h)   

где мы обозначили.

Соотношение (h) – это уравнение эллипсов (в зависимости от с2, т.е. от начальных условий) с центром в точке ).

Стрелки указывают направление, соответствующее возрастанию времени. Из (d) видно, что при , растет  (т.к. >0) и наоборот.

Видно, что изменение популяций носит циклический характер: через определенное время популяция возвращается к первоначальному уровню.

Уравнения первого порядка, разрешенные относительно производной.

      Такого рода уравнение имеет вид:

                                                                                     (6)

В дальнейшем будет доказано, что при некоторых ограничениях, налагаемых на функцию  уравнение (6) имеет единственное решение, удовлетворяющее условию:

                                      .

Его общее решение, содержащее все без исключения решения, зависит от одной произвольной постоянной.

Дифференциальное уравнение  устанавливает зависимость между координатами точки и угловым коэффициентом касательной  к графику решения в этой точке. Зная x и y, можно вычислить . Следовательно, дифференциальное уравнение рассматриваемого вида определяет поле направлений и задача интегрирования д.у. заключается в том, чтобы найти кривые, называемые интегральными кривыми1, направление касательных, к которым в каждой точке совпадает с направлением поля. Пример 5.

                          

Для построения поля направлений найдем геометрическое место точек, в которых касательные к искомым интегральным кривым сохраняют постоянное значение. Такие линии называются изоклинами. Уравнение изоклин получим, считая, что

                                ,

где k- постоянная. Таким образом,

                        ,

т.е. в данном случае изоклинами являются окружности с центром в начале координат, причем угловой коэффициент касательной к искомым интегральным кривым равен радиусу этих окружностей. Для построения поля направлений дадим постоянной k некоторые определенные значения. После этого можно приближенно провести искомые интегральные кривые.

      Пример 6.

                          

Изоклинами являются гиперболы или причем при k=1 гипербола распадается на пару прямых x=0 и y=0. При k=0 получаем изоклину ; эта гипербола разбивает плоскость на

части, в каждой из которых y сохраняет постоянный знак. Интегральные кривые  пересекая гиперболу

переходят из области возрастания функции y(x) в область её убывания или наоборот, и, следовательно, на ветвях этой гиперболы расположены точки максимума и минимума интегральных кривых.

Определим теперь знаки второй производной в различных областях плоскости:

    или        

Кривая    или

                          (7)

разбивает плоскость на две части, в одной из которых y<0, и, следовательно, интегральные кривые выпуклы вверх, а в другой y>0, и значит, инте

гральные кривые выпуклы вниз. При переходе через кривую (7)

интегральные кривые переходят от выпуклости к вогнутости, и, следовательно, на этой кривой расположены точки перегиба интегральных кривых.

В результате проведенного исследования известны области возрастания и убывания интегральных кривых, известно расположение точек максимума и минимума, известны области выпуклости и вогнутости и расположение точек перегиба, известна изоклина k=1. Этих сведений вполне достаточно для того, чтобы сделать набросок расположения интегральных кривых.

      Рассмотрим некоторые уравнения I порядка, которые интегрируются в квадратурах.

  1.  Уравнение с разделяющимися переменными.

Это уравнения вида:

                         

                                                                                     (13)

будем считать, что функции ,   непрерывны при , а, кроме того ,  т.к. если при , , то из (13) следует, что  есть решение.

Запишем уравнение (13) в виде:

                   

и проинтегрируем

                                                                     (14)

это и есть общее решение уравнения (13).

Пример 7.

                   .

Здесь

          ,

так что , где С - произвольная постоянная. Есть еще решение y0.

Решением задачи Коши

при  

здесь будет:

 .

  1.  Уравнения, приводящиеся к уравнениям с разделяющимися переменными.

а) Рассмотрим уравнение

 ,

где  .

Перейдем к новым переменным , в результате получим

                    т.е.       

или

       

т.е. переменные разделились. Интегрируя, получим:

                   

б) Рассмотрим теперь однородное д.у. I порядка

     

однородная функция нулевого порядка, т.е.  

                 

Положим , т.е. , тогда

 

  .   

в) Уравнение вида

 

будет однородным, если

 ,

т.е. ,однородные функции одного порядка, (), и будет уравнением с разделяющимися переменными, если

                       .

1) Пусть  –это решение уравнения (6) на отрезке [a,b] оси х. График этой функции   называется интегральной кривой уравнения (6).


 

А также другие работы, которые могут Вас заинтересовать

66775. Формирование и функционирование организационных структур управления субъектов предпринимательской деятельности современной России 871 KB
  Формирование и развитие организационных структур управления субъектов предпринимательской деятельности. Понятие и основная терминология организационной структуры управления субъекта предпринимательской деятельности. Понятие организационной структуры управления субъекта предпринимательской деятельности...
66776. ВЗАИМОСВЯЗЬ МОТИВАЦИОННО-СМЫСЛОВОЙ СФЕРЫ С СОСТОЯНИЕМ АДАПТАЦИИ ЛИЧНОСТИ В ПОСТЭКСТРЕМАЛЬНЫХ УСЛОВИЯХ 684 KB
  Многочисленные исследования, наблюдения, эксперименты не только не исчерпали проблему адаптации, а, напротив, показали ее глубину и многомерность. В последнее время предметом исследования психологов все чаще становится проблема адаптации личности в экстремальных и постэкстремальных условиях.
66777. АЛГОРИТМЫ И ПРОГРАММНЫЕ СРЕДСТВА ИДЕНТИФИКАЦИИ НЕЧЕТКИХ МОДЕЛЕЙ НА ОСНОВЕ ГИБРИДНЫХ МЕТОДОВ 4.41 MB
  Такой алгоритм исключает недостаток методов основанных на производных неспособность проходить локальные минимумы и недостаток генетического алгоритма не всегда точное попадание в глобальный оптимум. Трехэтапная идентификация параметров сначала многократным запуском алгоритма имитации отжига генерируется...
66778. Роль управленческого фактора в процессе взаимодействия коммерческих банков и их клиентов 439.5 KB
  Взаимодействие коммерческих банков и их клиентов промышленных предприятий осуществляется в различных организационных формах от создания финансово-промышленных групп на основе слияния промышленного и банковского капитала и до предельно формализованных контактов ограничивающихся привычными финансовыми...
66779. ТЕХНОЛОГИИ ДИСТАНЦИОННОГО ОБУЧЕНИЯ 149 KB
  Преимущества дистанционного обучения: Возможность заниматься в удобное для себя время в удобном месте и темпе. Но в этом таится и сложность дистанционные курсы в основе которых лежат новые технологии обучения не вписываются в структуру и программы традиционного обучения.
66781. Правовые проблемы недропользования с участием иностранного инвестора 712.5 KB
  Важной чертой принимаемого законодательства о недропользовании становится распространение на него некоторых методов и институтов гражданского права чего не допускало предшествующее законодательство. Значительно расширяется применение гражданско-правовых методов регулирования отношений...
66782. Общество с ограниченной ответственностью: правовое положение и роль органов внутренних дел в обеспечении его деятельности 740 KB
  В разные годы развития экономики нашей страны государство регламентирует возможность создания и деятельность различных организационно-правовых форм ведения предпринимательской деятельности. Осуществление хозяйствования в тех или иных формах определяется, прежде всего, уровнем развития производственных отношений...
66783. ИНДИВИДУАЛЬНЫЙ ИМИДЖ КАК СТОРОНА ДУХОВНОЙ ЖИЗНИ ОБЩЕСТВА 2.24 MB
  Острый интерес к проблемам имиджелогии в политике, торговле, рекламном деле, в организации масс медиа и индустрии развлечений,в искусстве, в практическом управлении - вот далеко не полный перечень очевидных факторов роста актуальности проблем имиджелогии.