21447

Линейные дифференциальные уравнения I порядка

Лекция

Математика и математический анализ

Линейным дифференциальным уравнением I порядка называется уравнение I порядка линейное относительно неизвестной функции и её производной. Если то уравнение 1 называется линейным однородным. В соответствии с этим методом в формуле 2 полагают тогда: Подставляем полученное соотношение в уравнение 1 будем иметь: или откуда интегрируя находим следовательно . Интегрируем соответствующее однородное уравнение т.

Русский

2013-08-02

299.5 KB

13 чел.

Лекция 2.

Линейные дифференциальные уравнения I порядка.

Линейным дифференциальным уравнением I порядка называется уравнение I порядка, линейное относительно неизвестной функции и её производной.

                                                                                              (1)

где  –непрерывные в той области, где ищется решение уравнения (1).

Если , то уравнение (1) называется линейным однородным. В линейном однородном уравнении переменные разделяются:

,          т.е.  

Таким образом ,

                                                               (2)

общее решение однородного уравнения.

При делении на y мы потеряли решение y=0, однако оно может быть включено в (2), если считать, что C может быть и равно нулю .

Для интегрирования неоднородного уравнения (1) применяется так называемый метод вариации произвольной постоянной.

В соответствии с этим методом в формуле (2) полагают , тогда:

Подставляем полученное соотношение в уравнение (1), будем иметь:

         ,

или

откуда, интегрируя, находим

 

a, следовательно

                      .        (3)

Итак, общее решение неоднородного линейного дифференциального уравнения I порядка равно сумме общего решения соответствующего однородного уравнения

и частного решения неоднородного уравнения

,

получающегося из (3) при .

Пример 1.

.

Интегрируем соответствующее однородное уравнение

            т.е.   \

Полагаем , тогда

подставляя в уравнение, получим:

               ,           т.е.  ,

.

Таким образом, общее решение

.

          Пример 2.

.

Интегрируя однородное уравнение, находим

,

.

Варьируем постоянную

.

Подставим в исходное уравнение

           ,

           

откуда

.

Уравнения, сводящиеся к линейным.

Многие дифференциальные уравнения после замены переменных могут быть сведены к линейным.

1. Уравнение Бернулли.

,

или

                           .                                      (4)

Заменим переменную

  .

Подставив в (4), получим линейное дифференциальное уравнение

.

Пример 3.

         

Замена:

Далее см. Пример 1.

 

Метод подстановки ( Даламбера).

В соответствии с этим методом в уравнении (1) применяют подстановку , тогда уравнение (1) примет вид

Выберем функцию U так, чтобы первая скобка обратилась в нуль:

.

Обозначим через  одно из частных решений этого уравнения, тогда для нахождения V имеем уравнение:

.

Находим общее решение этого уравнения . Теперь общее решение уравнения (1) будет иметь вид:

.

         Пример 4.

.

Перепишем это уравнение в виде:

.

Оно линейно относительно x и . Положим , тогда имеем:

.

Теперь  , или  ,  т.е. .

Положим , тогда

или , т.е. ,

откуда окончательно имеем

.

Метод Даламбера применим и для непосредственного решения уравнения Бернулли.

2. Уравнение Риккати.

В общем виде не интегрируется в квадратурах, однако, заменой переменной может быть преобразовано в уравнение Бернулли, если известно одно частное решение  этого уравнения.

Полагая  , получим:

,

но так как , то для z(x) получим уравнение Бернулли:

.

Пример 5.

.

Здесь легко догадаться (подобрать), что . Полагая , получим: , т.е. ,

или:

-

уравнение Бернулли. Далее,

,

,

т.е.

,

теперь

           ,   т.е.   ,

откуда окончательно:

.

Уравнение в полных дифференциалах.

Дифференциальное уравнение вида:

                                                             (5)

называется уравнением в полных дифференциалах, если

                      

т.е. уравнение (5) принимает вид:

                                    .

Если  – решение уравнения (5), то

                              ,

т.е.

                  ,                                                                (6)

(где C= const) - общий интеграл уравнения (5).

Если даны начальные значения , то постоянная С определится из уравнения (6):

,

т.е.

                                                                        (7)

является искомым частным интегралом.

Если  в точке, то уравнение (7) определяет y как неявную функцию x в окрестности точки .

Известно, что для того, чтобы левая часть (5)

                                       

являлась полным дифференциалом необходимо и достаточно(в односвязной области), чтобы функции  и  были непрерывно дифференцируемы и чтобы:

                                                                                           (8)

(Необходимость  условия (8) очевидна. Достаточность: пусть

             =  ,

где путь интегрирования – ломаная со звеньями, параллельными осям координат; тогда

          

           ,

т.е.    а

                             ).

В этом случае уравнение (5) легко интегрируется. Действительно,

.

С другой стороны,

.

Следовательно,

,

откуда

Для определения С(y) дифференцируем функцию U(x,y) по y:

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

966. Разработка программы для гипотетического (иллюстрированного) микропроцессора 425 KB
  Задан массив из пяти элементов - целых положительных чисел. Необходимо написать программу для гипотетического (иллюстрированного) микропроцессора. Эта программа позволит выполнять различные манипуляции с элементами массива.
967. Изучение стандартных функций MS Excel, позволяющих автоматизировать процесс решения финансовых задач 873.5 KB
  Анализ предметной области финансовых задач. Описание средств электронной таблицы MS Excel для проведения экономических расчетов. Реализация технологии решения задачи с использованием электронного табличного процессора.
968. Определение с точностью площади криволинейной трапеции 585 KB
  Для поиска константы C будем пользоваться методом золотого сечения. Для определения площади криволинейной трапеции воспользуемся методом Симпсона. Для решения поставленного уравнения используем метод половинного деления.
969. Создание объектов разработанного класса (символьная строка) 323.5 KB
  Описание диаграммы классов. Блок-схема метода ExchangeWords. Динамический массив символов и операции над ним. Цикл while и оператор if. обработка строк стандартными функциями библиотеки string.
970. Проект реконструкции автомобильной дороги федерального значения 999 KB
  Характеристика основных условий реконструкции автомобильной дороги. Климатические параметры холодного периода года. Инженерно-геологические условия. Дорожно-строительные материалы. Обустройство дороги и безопасность движения. Расчет количества рабочих дней для устройства дорожной одежды. Строительство искусственных сооружений. Расчет транспортных средств на возведение земляного полотна.
971. Культура Індії 43 KB
  Індійська культура є однією з найстаріших і найрізноманітніших культур світу. Архітектура Індії в ісламський період. Важливий етап розвитку індійської музики. В індуїзмі, танці завжди відігравали важливу роль в побуті.
972. Фізична й економічна географія України 72.5 KB
  Для степової зони характерні трави і стрічкові лісонасадження. Більшість українського населення міст, особливо сходу й півдня, розмовляє російською мовою. Відповідно до західних оцінок, національний дохід України на душу населення в 1970-х роках був вищий, ніж в Італії.
973. Анализ норматива оборотных средств предприятия 46.5 KB
  Определение потребности предприятия в оборотных средствах и анализ показателей использования оборотных средств, отражающих скорость оборачиваемости этих средств в процессе производства и реализации продукции.
974. Безопасность жизнедеятельности 177.5 KB
  История возникновения БЖД. Определение, цели, задачи, предметы изучения науки БЖД. Загрязнение среды обитания. Виды, источники и уровни негативных производственной и бытовой среды. Влияние параметров микроклимата на самочувствие человека.