21447

Линейные дифференциальные уравнения I порядка

Лекция

Математика и математический анализ

Линейным дифференциальным уравнением I порядка называется уравнение I порядка линейное относительно неизвестной функции и её производной. Если то уравнение 1 называется линейным однородным. В соответствии с этим методом в формуле 2 полагают тогда: Подставляем полученное соотношение в уравнение 1 будем иметь: или откуда интегрируя находим следовательно . Интегрируем соответствующее однородное уравнение т.

Русский

2013-08-02

299.5 KB

13 чел.

Лекция 2.

Линейные дифференциальные уравнения I порядка.

Линейным дифференциальным уравнением I порядка называется уравнение I порядка, линейное относительно неизвестной функции и её производной.

                                                                                              (1)

где  –непрерывные в той области, где ищется решение уравнения (1).

Если , то уравнение (1) называется линейным однородным. В линейном однородном уравнении переменные разделяются:

,          т.е.  

Таким образом ,

                                                               (2)

общее решение однородного уравнения.

При делении на y мы потеряли решение y=0, однако оно может быть включено в (2), если считать, что C может быть и равно нулю .

Для интегрирования неоднородного уравнения (1) применяется так называемый метод вариации произвольной постоянной.

В соответствии с этим методом в формуле (2) полагают , тогда:

Подставляем полученное соотношение в уравнение (1), будем иметь:

         ,

или

откуда, интегрируя, находим

 

a, следовательно

                      .        (3)

Итак, общее решение неоднородного линейного дифференциального уравнения I порядка равно сумме общего решения соответствующего однородного уравнения

и частного решения неоднородного уравнения

,

получающегося из (3) при .

Пример 1.

.

Интегрируем соответствующее однородное уравнение

            т.е.   \

Полагаем , тогда

подставляя в уравнение, получим:

               ,           т.е.  ,

.

Таким образом, общее решение

.

          Пример 2.

.

Интегрируя однородное уравнение, находим

,

.

Варьируем постоянную

.

Подставим в исходное уравнение

           ,

           

откуда

.

Уравнения, сводящиеся к линейным.

Многие дифференциальные уравнения после замены переменных могут быть сведены к линейным.

1. Уравнение Бернулли.

,

или

                           .                                      (4)

Заменим переменную

  .

Подставив в (4), получим линейное дифференциальное уравнение

.

Пример 3.

         

Замена:

Далее см. Пример 1.

 

Метод подстановки ( Даламбера).

В соответствии с этим методом в уравнении (1) применяют подстановку , тогда уравнение (1) примет вид

Выберем функцию U так, чтобы первая скобка обратилась в нуль:

.

Обозначим через  одно из частных решений этого уравнения, тогда для нахождения V имеем уравнение:

.

Находим общее решение этого уравнения . Теперь общее решение уравнения (1) будет иметь вид:

.

         Пример 4.

.

Перепишем это уравнение в виде:

.

Оно линейно относительно x и . Положим , тогда имеем:

.

Теперь  , или  ,  т.е. .

Положим , тогда

или , т.е. ,

откуда окончательно имеем

.

Метод Даламбера применим и для непосредственного решения уравнения Бернулли.

2. Уравнение Риккати.

В общем виде не интегрируется в квадратурах, однако, заменой переменной может быть преобразовано в уравнение Бернулли, если известно одно частное решение  этого уравнения.

Полагая  , получим:

,

но так как , то для z(x) получим уравнение Бернулли:

.

Пример 5.

.

Здесь легко догадаться (подобрать), что . Полагая , получим: , т.е. ,

или:

-

уравнение Бернулли. Далее,

,

,

т.е.

,

теперь

           ,   т.е.   ,

откуда окончательно:

.

Уравнение в полных дифференциалах.

Дифференциальное уравнение вида:

                                                             (5)

называется уравнением в полных дифференциалах, если

                      

т.е. уравнение (5) принимает вид:

                                    .

Если  – решение уравнения (5), то

                              ,

т.е.

                  ,                                                                (6)

(где C= const) - общий интеграл уравнения (5).

Если даны начальные значения , то постоянная С определится из уравнения (6):

,

т.е.

                                                                        (7)

является искомым частным интегралом.

Если  в точке, то уравнение (7) определяет y как неявную функцию x в окрестности точки .

Известно, что для того, чтобы левая часть (5)

                                       

являлась полным дифференциалом необходимо и достаточно(в односвязной области), чтобы функции  и  были непрерывно дифференцируемы и чтобы:

                                                                                           (8)

(Необходимость  условия (8) очевидна. Достаточность: пусть

             =  ,

где путь интегрирования – ломаная со звеньями, параллельными осям координат; тогда

          

           ,

т.е.    а

                             ).

В этом случае уравнение (5) легко интегрируется. Действительно,

.

С другой стороны,

.

Следовательно,

,

откуда

Для определения С(y) дифференцируем функцию U(x,y) по y:

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

60152. ЗИМУ ЯК ПРОЖИТИ БЕЗ ПРОБЛЕМ? 243 KB
  МЕТА: ознайомити учнів з видовим різноманіттям зимуючих птахів своєї місцевості;надати учням знання з біології птахів аспектів їх підгодівлі. Обладнання: плакати з зображеннями птахів матеріали для конкурсів маски птахів листівки агітаційного змісту.
60153. Дружба – велика сила 193.5 KB
  Очікуванні результати: Після заняття учні зможуть: сформулювати поняття дружба; практикувати навички взаємодопомоги при вирішенні різних проблем; критично ставитися до себе і своїх особистих якостей вчинків; знати прислівя та приказки про дружбу.
60154. Інтелектуальна гра «Я ЛЮБЛЮ УКРАЇНСЬКУ» 152 KB
  Стимулювати інтерес учнів до удосконалення мовної компетентності та збагачення свого словникового запасу; розвивати швидкість мислення та память; прищеплювати здоровий дух змагання; через міжпредметні звязки виховувати пізнавальні інтереси любов і повагу...
60155. Европейский день языков и межкультурного диалога 120.5 KB
  Слово учителя 26 сентября каждого года празднуется Европейский день языков. И в первый год 21 века произошло и первое празднование Европейского дня языков. В настоящее время в Европе сосуществуют свыше 70 национальных и региональных языков.
60156. Біологічна інтелектуальна гра «Зоряний час» 77 KB
  Перші 3 тури складаються з запитань завдань на які пропонується 4 варіанти відповідей із яких ви вибираєте правильну і відповідь на запитання даєте за допомогою карточки з відповідною цифрою. Право на відповідь мають і основний учасник та його помічник.
60158. Конкурс «Кмітливих, веселих та розумних математиків» 141.5 KB
  Отже розпочинаємо наш конкурс Кмітливих веселих та розумних математиків 1 завдання конкурсу: Математичні розвідники 10 хвилин В далеку давнину люди складали прислівя та приказки які дойшли і нині до нас. 2 завдання конкурсу...
60159. «Усе в твоїх руках…» Проект з основ здоров’я 100.5 KB
  Навчальний план проекту з основ здоровя для учнів 4 класу Тема проекту: Усе в твоїх руках Ключове питання: Чи впливає характер людини на її здоровя Тематичні питання: Чи справді наше здоровя у наших руках Для здоровя краще...
60160. День книги 208 KB
  Посещение библиотеки в день книги Учащиеся заранее готовились к этому дню: учили стихотворения готовили рассказы о своей любимой книге и произведении помогали в подготовке книжной выставки а также выставки книжек-самоделок подготовили загадки о природе природных явлениях.