21447

Линейные дифференциальные уравнения I порядка

Лекция

Математика и математический анализ

Линейным дифференциальным уравнением I порядка называется уравнение I порядка линейное относительно неизвестной функции и её производной. Если то уравнение 1 называется линейным однородным. В соответствии с этим методом в формуле 2 полагают тогда: Подставляем полученное соотношение в уравнение 1 будем иметь: или откуда интегрируя находим следовательно . Интегрируем соответствующее однородное уравнение т.

Русский

2013-08-02

299.5 KB

13 чел.

Лекция 2.

Линейные дифференциальные уравнения I порядка.

Линейным дифференциальным уравнением I порядка называется уравнение I порядка, линейное относительно неизвестной функции и её производной.

                                                                                              (1)

где  –непрерывные в той области, где ищется решение уравнения (1).

Если , то уравнение (1) называется линейным однородным. В линейном однородном уравнении переменные разделяются:

,          т.е.  

Таким образом ,

                                                               (2)

общее решение однородного уравнения.

При делении на y мы потеряли решение y=0, однако оно может быть включено в (2), если считать, что C может быть и равно нулю .

Для интегрирования неоднородного уравнения (1) применяется так называемый метод вариации произвольной постоянной.

В соответствии с этим методом в формуле (2) полагают , тогда:

Подставляем полученное соотношение в уравнение (1), будем иметь:

         ,

или

откуда, интегрируя, находим

 

a, следовательно

                      .        (3)

Итак, общее решение неоднородного линейного дифференциального уравнения I порядка равно сумме общего решения соответствующего однородного уравнения

и частного решения неоднородного уравнения

,

получающегося из (3) при .

Пример 1.

.

Интегрируем соответствующее однородное уравнение

            т.е.   \

Полагаем , тогда

подставляя в уравнение, получим:

               ,           т.е.  ,

.

Таким образом, общее решение

.

          Пример 2.

.

Интегрируя однородное уравнение, находим

,

.

Варьируем постоянную

.

Подставим в исходное уравнение

           ,

           

откуда

.

Уравнения, сводящиеся к линейным.

Многие дифференциальные уравнения после замены переменных могут быть сведены к линейным.

1. Уравнение Бернулли.

,

или

                           .                                      (4)

Заменим переменную

  .

Подставив в (4), получим линейное дифференциальное уравнение

.

Пример 3.

         

Замена:

Далее см. Пример 1.

 

Метод подстановки ( Даламбера).

В соответствии с этим методом в уравнении (1) применяют подстановку , тогда уравнение (1) примет вид

Выберем функцию U так, чтобы первая скобка обратилась в нуль:

.

Обозначим через  одно из частных решений этого уравнения, тогда для нахождения V имеем уравнение:

.

Находим общее решение этого уравнения . Теперь общее решение уравнения (1) будет иметь вид:

.

         Пример 4.

.

Перепишем это уравнение в виде:

.

Оно линейно относительно x и . Положим , тогда имеем:

.

Теперь  , или  ,  т.е. .

Положим , тогда

или , т.е. ,

откуда окончательно имеем

.

Метод Даламбера применим и для непосредственного решения уравнения Бернулли.

2. Уравнение Риккати.

В общем виде не интегрируется в квадратурах, однако, заменой переменной может быть преобразовано в уравнение Бернулли, если известно одно частное решение  этого уравнения.

Полагая  , получим:

,

но так как , то для z(x) получим уравнение Бернулли:

.

Пример 5.

.

Здесь легко догадаться (подобрать), что . Полагая , получим: , т.е. ,

или:

-

уравнение Бернулли. Далее,

,

,

т.е.

,

теперь

           ,   т.е.   ,

откуда окончательно:

.

Уравнение в полных дифференциалах.

Дифференциальное уравнение вида:

                                                             (5)

называется уравнением в полных дифференциалах, если

                      

т.е. уравнение (5) принимает вид:

                                    .

Если  – решение уравнения (5), то

                              ,

т.е.

                  ,                                                                (6)

(где C= const) - общий интеграл уравнения (5).

Если даны начальные значения , то постоянная С определится из уравнения (6):

,

т.е.

                                                                        (7)

является искомым частным интегралом.

Если  в точке, то уравнение (7) определяет y как неявную функцию x в окрестности точки .

Известно, что для того, чтобы левая часть (5)

                                       

являлась полным дифференциалом необходимо и достаточно(в односвязной области), чтобы функции  и  были непрерывно дифференцируемы и чтобы:

                                                                                           (8)

(Необходимость  условия (8) очевидна. Достаточность: пусть

             =  ,

где путь интегрирования – ломаная со звеньями, параллельными осям координат; тогда

          

           ,

т.е.    а

                             ).

В этом случае уравнение (5) легко интегрируется. Действительно,

.

С другой стороны,

.

Следовательно,

,

откуда

Для определения С(y) дифференцируем функцию U(x,y) по y:

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

8992. Общие проблемы философии науки 168.5 KB
  Общие проблемы философии науки Вопрос № 13: Идеалы и нормы исследования, их социокультурная размерность и роль в научной деятельности. Ответ на вопрос: Научная деятельность, как и любая другая, руководствуется, во-первых, вполне определенным...
8993. Лекции по философии. Соотношение философии и науки по предмету 262.48 KB
  Лекция № 1. Предмет философии. Основная проблема: соотношение философии и науки по предмету. Цель: определить предмет философии как отношение человека к миру, так что аспекты этого отношения (онтологический, гносеологический и аксиологический) опред...
8994. Определение места философии в жизни человека 362.5 KB
  Определение места философии в жизни человека. Основная часть. Хайдеггер М. Основные понятия метафизики. Мамардашвили М. Как я понимаю философию. Соловьев Вл. Исторические дела философии. Бердяев Н.А. Философия как творческий акт. Приложение. Соловье...
8995. Философия античности. Природа души и ее свойства. Мир идеей и его познание 319 KB
  Философия античности. Основная часть. Платон: Природа души и ее свойства. Мир идеей и его познание. Теоретическое знание и философское познание. Философия как стремление к мудрости. Аристотель: О философии. О началах и причинах вещей. Материя и движ...
8996. Философия Средневековья. Теодицея: причины возникновения зла в мире 263 KB
  Философия Средневековья. Основная часть. О философии. Поиск Бога и доказательство Его бытия. Теодицея: причины возникновения зла в мире. Теория познания: вера и разум. Приложение. Библия: Первая книга Моисеева. Бытие. Время и вечность. О сущем и сущ...
8997. Философия Нового времени и Просвещения. Научное познание: методология рационализма 140.5 KB
  Философия Нового времени и Просвещения. Основная часть. Новоевропейская картина мира. Рене Декарт: Научное познание: методология рационализма. Интеллектуальная интуиция. Френсис Бэкон: Цель познания. Экспериментальный метод научного познания. Дж. Ло...
8998. Немецкая классическая философия. Нравственная философия 234.5 KB
  Немецкая классическая философия. Основная часть. И. Кант: Теория познания. Нравственная философия. Г.В.Ф. Гегель: О философии. Наука логики. О природе деалектического. Всемирная история. Основная часть. В конце XVIII - XIX вв. в Германии насту...
8999. Философия материализма. Сущность человека и критика религии 403 KB
  Философия материализма. Основная часть. Фейербах Л. О философии. Сущность человека и критика религии. К. Маркс, Ф. Энгельс. О философии. Природа и сущность человека. Отчужденный труд. Материалистическое понимание истории. Теория коммунистического ра...
9000. Философия жизни. О нашем поведении относительно миропорядка и судьбы 162 KB
  Философия жизни. Основная часть. А. Шопенгауэр О том, что есть индивид. О нашем поведении относительно миропорядка и судьбы. Ф. Ницше Смерть Бога. Нигилизм. Низложение христианства. Жизнь и воля к власти. Вечное возвращение. сверхчеловек...