21448

Нормальные системы дифференциальных уравнений. Условие Липшица

Лекция

Математика и математический анализ

Условие Липшица. Говорят что функция удовлетворяет условию Липшица в некотором интервале [b] если существует такое число 0 что для. Так функция удовлетворяет условию Липшица в окрестности x=0 но её производная в точке x=0 имеет разрыв. Если функция нескольких переменных удовлетворяет условию Липшица по каждой из этих переменных в соответствующем диапазоне их изменения т.

Русский

2013-08-02

267 KB

37 чел.

Лекция 3.

Нормальные системы дифференциальных уравнений. Условие Липшица.

      Рассмотрим дифференциальное уравнение вида:

Положим

                   

тогда наше уравнение сводится к системе n дифференциальных уравнений I порядка:

Эта система является частным случаем системы дифференциальных уравнений

                                                               (1)

Система (1) называется нормальной системой дифференциальных уравнений первого порядка.

Для выделения единственного решения система (1) дополняется начальными условиями:

                               .                            (2)

Задача (1) и (2) называется задачей Коши. Условия (2) называются начальными данными Коши.

Говорят, что функция  удовлетворяет условию Липшица в некотором интервале [a,b], если существует такое число A>0, что для  

.

Это условие – более слабое, чем, например, условие непрерывной дифференцируемости. Так, функция

,

удовлетворяет условию Липшица в окрестности x=0, но её производная в точке x=0 имеет разрыв.

Если функция нескольких переменных ( удовлетворяет условию Липшица по каждой из этих переменных в соответствующем диапазоне их изменения, т.е. если

               ,           (*)

то эта функция удовлетворяет условию Липшица также и по совокупности переменных , т.е. постоянная А, для которой

              

Действительно, из тождества

              

               

                

на основе (*) следует неравенство

          

Обозначив через , наибольшую из , получим требуемое неравенство.

Теорема существования и единственности для нормальных систем дифференциальных уравнений.

 Напомним, что нормальной системой дифференциальных уравнений  была названа система вида:

                                                                (1)

с начальными условиями (данными Коши)

                                         (2)

Имеет место следующая фундаментальная теорема (Пикара):

Пусть даны система дифференциальных уравнений вида (1) и начальные условия (2); если можно найти такие положительные числа a и b, что в области , определенной неравенствами

                  

                           ,                 (3)

функции  непрерывны и удовлетворяют условию Липшица по переменным , то можно определить такое число (0<a), что в интервале  система обладает одним и только одним решением, удовлетворяющим начальным условиям (2).

        Предварительно покажем, что система (1), (2) эквивалентна, следующей системе n (нелинейных) интегральных уравнений Вольтерра:

                                              (4)

Действительно, дифференцируя (4) по x, получим i-е уравнение системы (1), а, полагая в (4) , получим, что , т.е. начальные условия (2). Обратно, интегрируя i-е уравнение системы (1) с учетом (2), получим (4).

Будем решать систему (4) методом последовательных приближений, т.е. положим

                     

                            (5)

Т.к. по условию теоремы функции  непрерывны в замкнутой области (гиперинтервале) , то они равномерно непрерывны в . Поэтому существует такое число M>0, что всюду в  

                                                                     (6)

Отсюда, полагая , для значений  будем иметь последовательно

              

Таким образом, для  функции  удовлетворяют при всех m условиям теоремы и, в частности условию Липшица, поскольку значения переменных  лежат в интервале .

      Покажем, что при m система функций (5) равномерно сходится к некоторой системе функций

                                                                    (7)

т.е. для  можно найти такое , что для всех  и всех i=1,…,n при  ,будет

                          .

В самом деле, поскольку

                               

то с использованием условия Липшица, получим

         

,

где А – подходящая константа (большая нуля), единая для всех i. Аналогично

            

               

и т.д.

       Таким образом, вообще

    ,

или

                                  (9)

Отсюда следует, что ряд

               (10)

мажорируется  сходящимся числовым рядом

            

и потому абсолютно и равномерно сходится в интервале . Т.к. сумма его первых (m+1) членов равна , то отсюда следует, что для  при  будет

                   

где  означает сумму ряда (10), т.е. предел  при m.

Теперь нужно взять .

      Докажем теперь, что система функций (7) удовлетворяет системе интегральных уравнений (4), т.е., что равенства

                        (11)

являются тождествами.

Для доказательства положим

С использованием соотношения (5) будем иметь

.

Вычтя из обеих частей этого равенства

,

получим

         

   

              

Однако в силу условия Липшица и (8) имеем при  

      

Поэтому

           

Т.к. величина справа может быть сделана сколь угодно малой, а величина слева неотрицательна, то (11) тождественно выполняется.

      Осталось доказать, что система функций (7) является единственным решением системы (4).

Предположим, что функции

                                                                (12)

также образуют решение системы (4). Ясно, что функции   непрерывны, т.к. таковы правые части уравнений системы (4); кроме того, . Поэтому, заменяя (если это необходимо) интервал  на меньший интервал , мы можем считать, что

т.е. . Поэтому справедливы неравенства (6), т.е.

                ,                                     (6a)

а поскольку по предположению

            ,

то с учетом (6) и (6а) имеем

        

Далее, т.к.

                                   (13)

то, воспользовавшись полученным неравенством и неравенством Липшица, получим

                      .                        (14)

Снова повторяя ту же процедуру, из (13) и (14) имеем

                            

и т.д.; на m-м шаге получим

        ,

т.к. величина справа стремится к нулю, а слева неотрицательна, то отсюда следует, что , ч. т. д.

Часто вместо условия Липшица

вводят более грубое, но обычно легко проверяемое условие существования ограниченной по модулю производной F(x) на отрезке [a,b].

Действительно, если при x[a, b]

                                          

то, пользуясь теоремой о конечных приращениях (формулой Лагранжа), получим

где , т.е. [a, b], поэтому , а, следовательно,

Приведенный выше пример функции , для которой условие

Липшица выполняется, но производная F(x) при x=0 не существует, говорит о том, что условие  является более грубым, чем условие Липшица.

Пример.

Д.у. II порядка

                      

Положим

Тогда получим нормальную систему д.у.

Пусть

             

Эквивалентная систему интегральных уравнений имеет вид:

             

Итерации:

            

Итак,

             

При x=/2:

             

Точное решение:

               

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

45455. Устойчивость систем управления 57.5 KB
  В соответствии с классическим методом решение дифференциального уравнения ищется в виде: yt = yвынt yсвt. Здесь yсвt общее решение однородного дифференциального уравнения то есть уравнения с нулевой правой частью: oyn 1yn1 . Поэтому решение данного уравнения называется свободной составляющей общего решения. yвынt частное решение неоднородного дифференциального уравнения под которым понимается уравнение с ненулевой правой частью.
45456. Математические модели объектов управления в системах управления 1.07 MB
  Применять интегральный закон регулирования нельзя так как это приводит к повышению порядка астатизма системы второй порядок ибо сам объект является интегрирующим звеном. Системы с астатизмом второго порядка построить можно но требуется сложное корректирующее звено обладающее дифференцирующими свойствами. Часто системы с регуляторами рассматриваются как системы с встречнопараллельными корректирующими цепями. не учитывать некоторые особенности характеристик исследуемых элементов а также не учитывать отдельные связи если они не...
45457. Системы управления и регулирования. Использование структурных схем. Законы управления. Принципы управления, качество 83 KB
  И интегральный – регулятор : Преимуществом данного регулятора является лучшая по сравнению с Прегулятором точность установки режима а недостатками – худшие по сравнению с Прегулятором показатели качества а именно большая колебательность и меньшее быстродействие. ПИ – регулятор : Объединяет два регулятора П и И следовательно обладает наилучшими свойствами по сравнению с вышеописанными регуляторами а именно за счет Псоставляющей улучшается показательные качества в переходном процессе а за счет Исоставляющей уменьшается...
45458. Системы управления при случайных воздействиях. Преобразование стационарного случайного сигнала стационарной линейной динамической системой 265.5 KB
  Системы управления при случайных воздействиях. Если задающее воздействие gt является случайным процессом то выходная координата системы yt и ошибка воспроизведения xt = gt yt представляют собой также случайные процессы. Следовательно при случайных воздействиях речь может идти об определении не мгновенных а лишь некоторых средних значений выходной переменной системы и ошибки. Такими средними значениями являются среднее значение квадрата выходной переменной системы 9.
45459. Основные задачи анализа систем с минимальной средней квадратичной ошибкой: задача фильтрации, задача экстраполяции, задача дифференцирования и др 265.5 KB
  Если задающее воздействие gt является случайным процессом то выходная координата системы yt и ошибка воспроизведения xt = gt yt представляют собой также случайные процессы. Следовательно при случайных воздействиях речь может идти об определении не мгновенных а лишь некоторых средних значений выходной переменной системы и ошибки. Такими средними значениями являются среднее значение квадрата выходной переменной системы 9.23 Следовательно для исследования статистической точности автоматических систем необходимо вычисление...
45460. Двойственность в ЛП, построение моделей двойственных задач 139 KB
  Любой задаче ЛП можно поставить в соответствие другую задачу сопряженная или двойственная то есть задачи существуют парами. Коэффициенты критерия двойственной задачи образуются из компонентов вектора ограничений прямой задачи. Компоненты вектора ограничений двойственной задачи образуются из коэффициентов линейной формы критерия прямой задачи. Матрица условий двойственной задачи образуется транспонированием матрицы условий прямой задачи.
45461. Структура файловой системы. Механизм доступа к файлам 344 KB
  Механизм доступа к файлам. Поэтому принято хранить данные на внешних носителях обычно это диски в единицах называемых файлами. Историческим шагом явился переход к использованию централизованных систем управления файлами. Система управления файлами берет на себя распределение внешней памяти отображение имен файлов в адреса внешней памяти и обеспечение доступа к данным.
45462. Математические методы проведения экспертизы при оценке решений 120.5 KB
  Из определений и высказываний об искусственном интеллекте можно вывести три основных заключения: а термин искусственный интеллект употребляется в двух различных смыслах: как обозначение определенного исследовательского направления и как название для систем на разработку которых это направление нацелено; б среди ученых существуют разногласия относительно возможностей как принципиальных так и реальных искусственного интеллекта как исследовательского направления; в для...
45463. Алгоритм функционирования экспертной системы на имитационном принципе 88 KB
  При построении системы понятий с помощью метода локального представления эксперта просят разбить задачу на подзадачи для перечисления целевых состояний и описания общих категорий цели. Полученные значения могут служить критерием для классификации всех элементов данных и таким образом для формирования системы понятий. Текстологический метод формирования системы понятий заключается в том что эксперту дается задание выписать из руководств книг по специальности некоторые элементы представляющие собой единицы смысловой информации.