21449

Теорема о дифференцируемости решений дифференциальных уравнений. Особые точки

Лекция

Математика и математический анализ

Особые точки. Теорема: если в окрестности точки функция имеет непрерывные производные до mого порядка включительно то решение уравнения 1 удовлетворяющее начальному условию в некоторой окрестности точки имеет непрерывные производные до m1 порядка включительно. Подставляя в уравнение 1 получим тождество...

Русский

2013-08-02

463.5 KB

3 чел.

Лекция 4.

Теорема о дифференцируемости решений дифференциальных уравнений. Особые точки.

Теорема: если в окрестности точки функция  имеет непрерывные производные до m-ого порядка включительно, то решение  уравнения

                                                                              (1)

удовлетворяющее начальному условию , в некоторой окрестности точки  имеет непрерывные производные до (m+1) порядка включительно.

 Доказательство. Подставляя  в уравнение (1), получим тождество

                                                                          (1a)

и, следовательно, решение  имеет в некоторой окрестности рассматриваемой точки непрерывную производную, равную . Тогда в силу существования непрерывных производных функции f, будет существовать непрерывная вторая производная решения

Если m>1, то, в силу существования непрерывных производных второго порядка, можно, еще раз дифференцируя тождество (1а), обнаружить существование и непрерывность третьей производной

                

Повторяя это рассуждение m раз, докажем утверждение теоремы.

Рассмотрим теперь точки , в окрестности которых решения уравнения (1), удовлетворяющего условию , не существует, или решение существует, но оно не единственно. Такие точки называются особыми точками.

Кривая, состоящая из особых точек, называется особой. Очевидно, что особые точки будут среди тех, в которых нарушаются условия теоремы существования и единственности решения уравнения (1).

Первое  условие теоремы нарушается в точках разрыва функции . Однако, если переменные x и y равноправны, то в случае, когда при   функция ,  уравнение (1) может быть заменено следующим

у которого правая часть уже непрерывна в точке , если считать , что   .

Поэтому в тех задачах, в которых переменные x и y равноправны, особые точки могут быть среди тех, в которых функции   и  разрывные.

Часто уравнение (1) имеет вид:

                                                                                        (2)

где функции  – непрерывны.

В этом случае функции  и  будут одновременно разрывными, лишь в тех точках , в которых  и не существует пределов:

                             и          .

Рассмотрим поведение интегральных кривых в окрестности особой точки указанного выше типа на примере следующего простого уравнения:

                                                                                          (3)

Пусть  (т.к. в противном случае ) (т.е. при этом ).

Уравнение (3) эквивалентно следующей системе дифференциальных уравнений:

                                                                                         

с матрицей

.

Рассмотрим различные возможные случаи.

I. Корни характеристического уравнения

                        ,                (4)

где  - единичная матрица, разные: .

В этом случае существует линейное преобразование

с невырожденной матрицей , такое, что

,

или

,

т.е.

                                      .                                      (5)
Система (5) сводится к уравнению

                                          ,                                                                   (6)

которое решается разделением переменных:

                     

откуда

                                 .                                                                (7)

Рассмотрим возможные случаи.

I.1. Корни   действительные и одного знака. 

Без ограничения общности можно считать, что . Все интегральные кривые (7) проходят через начало координат =0. Все они касаются в начале оси , т.к.   

        .

Кроме семейства (7), куда входит и решение =0, существует также, как видно из (6), интегральная кривая =0.

Через начало координат проходит бесконечно много интегральных

кривых, такая особая точка называется узлом (бесконечное множество решений в точке , , С – любое).

Пример 1.

(семейство парабол с вертикальными осями и с вершиной в особой точке).

I.2. Корни  - действительные разных знаков. 

Тогда  Решение (7) имеет вид:

Два решения =0,=0 проходят через особую точку (начало координат). Остальные интегральные кривые не проходят через начало координат. Такая особая точка называется седлом.

    Пример 2.

        

   Общий интеграл        .

I.3. Корни  - комплексно сопряженные:

В этом случае, как видно из (5), мы можем считать, что . Таким образом, решение системы уравнений (5) мы можем записать в следующем виде:

,

где  - вещественная постоянная.

Получившиеся новые переменные , принимают комплексные значения при вещественных x и y, поэтому перейдем к вещественным переменным U, V при помощи невырожденного преобразования

             

В результате будем иметь:

                            ,                        (8)

или

.

В полярных координатах () имеем  .

Это семейство логарифмических спиралей в плоскости U, V с асимптотической точкой в начале; все кривые примыкают к началу, но без определенной предельной касательной. Они делают у точки (0,0) бесконечное количество оборотов. Такая особая точка называется фокусом.

I.4. Корни  чисто мнимые: .

Из (8) имеем

                                               

Семейство интегральных кривых есть семейство замкнутых кривых, окружающих особую точку; через саму особую точку не проходит ни одной интегральной кривой. Такая особая точка называется центром.

II. Корни  - равные действительные:

.

В этом случае дискриминант характеристического уравнения (4) равен нулю:

                                 .

Последнее, в свою очередь, возможно лишь в случае, когда , а также либо a=0, либо d=0, либо a=d=0. Рассмотрим отдельно эти случаи.

II.1. , a=0, либо d=0. Пусть для определенности d=0,  . В случае, когда a=0, , картина будет качественно такой же.

В рассматриваемом случае из уравнения (3) имеем

,

откуда  .

Решая второе уравнение, получим

.

Таким образом, исключая t, будем иметь

                       .                                           (9)  

Из (9) следует, что

                        ,

где знак (+) или  зависит от знака . Это вырожденный узел. Здесь, в отличие от узла (1) все интегральные кривые имеют одну касательную. В случае (1) одна кривая имела другую касательную. На рисунке изображен случай, соответствующий >0.

II.2. b=c=, a=d=0. В этом случае уравнение (3) имеет следующий вид

                       ,

а его общее решение -               .

Такая особая точка называется дикритическим узлом.


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

где , т.е. [a, b], поэтому , а, следовательно,

Приведенный выше пример функции , для которой условие

Липшица выполняется, но производная F(x) при x=0 не существует, говорит о том, что условие  является более грубым, чем условие Липшица.

Пример.

Д.у. II порядка

                      

Положим

Тогда получим нормальную систему д.у.

Пусть

             

Эквивалентная систему интегральных уравнений имеет вид:

             

Итерации:

            

Итак,

             

При x=/2:

             

Точное решение:

               

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

70625. Инструментальная среда BPwin 150.84 KB
  Функциональные возможности инструментальных средств структурного моделирования деловых процессов будут рассмотрены на примере cseсредства BPwin. BPwin поддерживает три методологии моделирования: функциональное моделирование IDEF0; описание бизнес-процессов IDEF3...
70626. Синтетическая методика 34.72 KB
  Под лучшим описанием в данном случае понимается наименьшая ошибка при попытке по полученной модели предсказать поведение реальной системы. На уровне общего описания системы функциональные методики допускают значительную степень произвола в выборе общих интерфейсов системы...
70627. Объектно-ориентированная методика 38.73 KB
  Объектно-ориентированный подход использует объектную декомпозицию при этом статическая структура описывается в терминах объектов и связей между ними а поведение системы описывается в терминах обмена сообщениями между объектами.
70628. Функциональная методика потоков данных 38.4 KB
  Диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе. При создании диаграммы потоков данных используются четыре основных понятия: потоки данных процессы работы преобразования входных потоков данных...
70629. Функционально-ориентированные и объектно-ориентированные методологии описания предметной области 48.7 KB
  Функциональные методики наиболее известной из которых является методика IDEF рассматривают организацию как набор функций преобразующий поступающий поток информации в выходной поток. Функциональная методика IDEF0 Методологию IDEF0 можно считать следующим этапом развития хорошо...
70630. Функциональная структура 38.65 KB
  Последовательность взаимосвязанных по входам и выходам функций составляет бизнес-процесс. Функция бизнес-процесса может порождать объекты любой природы материальные денежные информационные.
70631. Структурная модель предметной области 39.44 KB
  Для того чтобы получить адекватный предметной области проект ИС в виде системы правильно работающих программ необходимо иметь целостное системное представление модели которое отражает все аспекты функционирования будущей информационной системы.
70632. Результаты предпроектного обследования 41.5 KB
  Другие Операции бизнес-процесса Операция Исполнитель Как часто Входящие документы документы основания Исходящий документ составляемый документ Описание документов бизнес-процесса Составляемый документ исходящий документ Операция Кто составляет исполнитель...