21449

Теорема о дифференцируемости решений дифференциальных уравнений. Особые точки

Лекция

Математика и математический анализ

Особые точки. Теорема: если в окрестности точки функция имеет непрерывные производные до mого порядка включительно то решение уравнения 1 удовлетворяющее начальному условию в некоторой окрестности точки имеет непрерывные производные до m1 порядка включительно. Подставляя в уравнение 1 получим тождество...

Русский

2013-08-02

463.5 KB

3 чел.

Лекция 4.

Теорема о дифференцируемости решений дифференциальных уравнений. Особые точки.

Теорема: если в окрестности точки функция  имеет непрерывные производные до m-ого порядка включительно, то решение  уравнения

                                                                              (1)

удовлетворяющее начальному условию , в некоторой окрестности точки  имеет непрерывные производные до (m+1) порядка включительно.

 Доказательство. Подставляя  в уравнение (1), получим тождество

                                                                          (1a)

и, следовательно, решение  имеет в некоторой окрестности рассматриваемой точки непрерывную производную, равную . Тогда в силу существования непрерывных производных функции f, будет существовать непрерывная вторая производная решения

Если m>1, то, в силу существования непрерывных производных второго порядка, можно, еще раз дифференцируя тождество (1а), обнаружить существование и непрерывность третьей производной

                

Повторяя это рассуждение m раз, докажем утверждение теоремы.

Рассмотрим теперь точки , в окрестности которых решения уравнения (1), удовлетворяющего условию , не существует, или решение существует, но оно не единственно. Такие точки называются особыми точками.

Кривая, состоящая из особых точек, называется особой. Очевидно, что особые точки будут среди тех, в которых нарушаются условия теоремы существования и единственности решения уравнения (1).

Первое  условие теоремы нарушается в точках разрыва функции . Однако, если переменные x и y равноправны, то в случае, когда при   функция ,  уравнение (1) может быть заменено следующим

у которого правая часть уже непрерывна в точке , если считать , что   .

Поэтому в тех задачах, в которых переменные x и y равноправны, особые точки могут быть среди тех, в которых функции   и  разрывные.

Часто уравнение (1) имеет вид:

                                                                                        (2)

где функции  – непрерывны.

В этом случае функции  и  будут одновременно разрывными, лишь в тех точках , в которых  и не существует пределов:

                             и          .

Рассмотрим поведение интегральных кривых в окрестности особой точки указанного выше типа на примере следующего простого уравнения:

                                                                                          (3)

Пусть  (т.к. в противном случае ) (т.е. при этом ).

Уравнение (3) эквивалентно следующей системе дифференциальных уравнений:

                                                                                         

с матрицей

.

Рассмотрим различные возможные случаи.

I. Корни характеристического уравнения

                        ,                (4)

где  - единичная матрица, разные: .

В этом случае существует линейное преобразование

с невырожденной матрицей , такое, что

,

или

,

т.е.

                                      .                                      (5)
Система (5) сводится к уравнению

                                          ,                                                                   (6)

которое решается разделением переменных:

                     

откуда

                                 .                                                                (7)

Рассмотрим возможные случаи.

I.1. Корни   действительные и одного знака. 

Без ограничения общности можно считать, что . Все интегральные кривые (7) проходят через начало координат =0. Все они касаются в начале оси , т.к.   

        .

Кроме семейства (7), куда входит и решение =0, существует также, как видно из (6), интегральная кривая =0.

Через начало координат проходит бесконечно много интегральных

кривых, такая особая точка называется узлом (бесконечное множество решений в точке , , С – любое).

Пример 1.

(семейство парабол с вертикальными осями и с вершиной в особой точке).

I.2. Корни  - действительные разных знаков. 

Тогда  Решение (7) имеет вид:

Два решения =0,=0 проходят через особую точку (начало координат). Остальные интегральные кривые не проходят через начало координат. Такая особая точка называется седлом.

    Пример 2.

        

   Общий интеграл        .

I.3. Корни  - комплексно сопряженные:

В этом случае, как видно из (5), мы можем считать, что . Таким образом, решение системы уравнений (5) мы можем записать в следующем виде:

,

где  - вещественная постоянная.

Получившиеся новые переменные , принимают комплексные значения при вещественных x и y, поэтому перейдем к вещественным переменным U, V при помощи невырожденного преобразования

             

В результате будем иметь:

                            ,                        (8)

или

.

В полярных координатах () имеем  .

Это семейство логарифмических спиралей в плоскости U, V с асимптотической точкой в начале; все кривые примыкают к началу, но без определенной предельной касательной. Они делают у точки (0,0) бесконечное количество оборотов. Такая особая точка называется фокусом.

I.4. Корни  чисто мнимые: .

Из (8) имеем

                                               

Семейство интегральных кривых есть семейство замкнутых кривых, окружающих особую точку; через саму особую точку не проходит ни одной интегральной кривой. Такая особая точка называется центром.

II. Корни  - равные действительные:

.

В этом случае дискриминант характеристического уравнения (4) равен нулю:

                                 .

Последнее, в свою очередь, возможно лишь в случае, когда , а также либо a=0, либо d=0, либо a=d=0. Рассмотрим отдельно эти случаи.

II.1. , a=0, либо d=0. Пусть для определенности d=0,  . В случае, когда a=0, , картина будет качественно такой же.

В рассматриваемом случае из уравнения (3) имеем

,

откуда  .

Решая второе уравнение, получим

.

Таким образом, исключая t, будем иметь

                       .                                           (9)  

Из (9) следует, что

                        ,

где знак (+) или  зависит от знака . Это вырожденный узел. Здесь, в отличие от узла (1) все интегральные кривые имеют одну касательную. В случае (1) одна кривая имела другую касательную. На рисунке изображен случай, соответствующий >0.

II.2. b=c=, a=d=0. В этом случае уравнение (3) имеет следующий вид

                       ,

а его общее решение -               .

Такая особая точка называется дикритическим узлом.


EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

где , т.е. [a, b], поэтому , а, следовательно,

Приведенный выше пример функции , для которой условие

Липшица выполняется, но производная F(x) при x=0 не существует, говорит о том, что условие  является более грубым, чем условие Липшица.

Пример.

Д.у. II порядка

                      

Положим

Тогда получим нормальную систему д.у.

Пусть

             

Эквивалентная систему интегральных уравнений имеет вид:

             

Итерации:

            

Итак,

             

При x=/2:

             

Точное решение:

               

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

52062. Володимир Винниченко. «Федько — халамидник». Щедрий на добро внутрішній світ героя. Федько як особистість. Образи Федька і Толі 141 KB
  Образи Федька і Толі. Образи Федька і Толі. На уроці ми з вами визначимо риси характеру Федька які вирізняють його з кола друзів – однолітків прокоментуємо їх. Порівняємо Федька і Толю зробимо відповідні висновки.
52063. Подорож. Переваги і недоліки різних видів подорожей 76.5 KB
  Travelling by plane is the fastest. You can get to many cities only in a few hours. You can stop wherever you like. During the trip you can sit comfortably in the armchair and read, eat or sleep. During the trip you need no tickets. People can
52064. Підсумковий урок – подорож «Синоніми, антоніми, омоніми» 37.5 KB
  учні дають визначення синонімам наводять приклади; Гра Синонімічний ланцюжок І варіант – щирий ІІ варіант – казати ІІІ варіант – кричати виконання вправ за варіантами різних рівнів складності І варіант – скласти зв’язний текст з синонімічного ланцюжка ІІ варіант – відредагувати речення замінивши однокореневі слова синонімами. ІІІ варіант – Підберіть потрібне слово. Коли групи приїхали на зупинку диктор оголошував назву станції але мікрофон був зламаний і ми почули останні слова деньніч З’ясуємо яке це місто...
52065. В поисках сокровищ Луганщины 597.5 KB
  Углублять знания учащихся о родном крае; формировать представление о национальной культуре украинского народа; развивать поисковые и творческие способности учащихся, умение работать в команде, мышление, память, представление;
52066. Наука. Наукові дослідження 2.35 MB
  Наука — сфера людської діяльності, функцією якої є вироблення і систематизація об'єктивних знань про дійсність; одна з форм суспільної свідомості.
52067. Щербина В. С . Господарське право 3.87 MB
  У підручнику відповідно до програми курсу висвітлено основні правові інститути Загальної частини господарського права, а також питання правового регулювання в окремих галузях господарювання (Особлива частина) на основі Господарського кодексу України та нового Цивільного кодексу України, а також інших нормативно-правових актів господарського законодавства України. Головну увагу зосереджено на правових питаннях господарської діяльності та управління нею.
52068. Графические возможности языка программирования 129.5 KB
  Точка SetPixelxycolor Закрашивает цветом color точку с координатами x y; Отрезок Linex1y1x2y2 Рисует отрезок из точки с координатами x1y1 в точку с координатами x2y2; окружность Circlexy rdius Рисует окружность с центром в точке с координатами xy и радиусом rdius. Точки с координатами x1 y1 и x2 y2 определяют диагональные вершины прямоугольника. Начало текста в точке с координатами x y.
52069. ЭТНОГРАФИЯ. Ю. В. Бромлея и Г. Е. Маркова 2.05 MB
  Специальный раздел посвящен проблемам этнической истории народов СССР вопросам формирования новой исторической общности советского народа. Классификация народов мира. Распространенность такого представления в значительной мере связана с тем что сложившись как наука в эпоху расцвета колониализма буржуазной Европы этнография была первоначально нацелена преимущественно на изучение народов внеевропейских территорий в большинстве отстававших в своем развитии. Уже давно стала очевидна несостоятельность деления народов на исторические...
52070. Основи наукових досліджень 846 KB
  Методологія типологія та етапи наукового дослідження План Предмет і задачі дисципліни Основи наукових досліджень. Методологічні основи наукового дослідження Рівні психологопедагогічних досліджень. ОПП: Наука наукознавство об’єкт науки предмет науки наукове дослідження метод методологія методична основа. Методологічні основи наукового дослідження Рівні психологопедагогічних досліджень.