21451

Линейные дифференциальные уравнения n-ого порядка

Лекция

Математика и математический анализ

Если при то на этом отрезке однородное уравнение 1 эквивалентно следующему 2 где. Уравнение 2 запишем также в виде 2 Если коэффициенты непрерывны на отрезке [b] то в окрестности любых начальных значений где любая точка интервала x b удовлетворяется условие теоремы существования и единственности см. функции ...

Русский

2013-08-02

230 KB

20 чел.

Лекция 6.

Линейные дифференциальные уравнения n-ого порядка.

      Уравнение вида

                        (1)

линейное относительно неизвестной функции и её производных, называется линейным дифференциальным уравнением n – ого порядка.

Если правая часть (x)0, при axb, то уравнение называется линейным однородным.

Если  при axb, то на этом отрезке однородное уравнение (1) эквивалентно следующему

                                      (2)

где . Уравнение (2) запишем также в виде

                                                       (2a)

Если коэффициенты  непрерывны на отрезке [a,b], то в окрестности любых начальных значений

          

где  – любая точка интервала a<x<b, удовлетворяется условие теоремы существования и единственности (см. лекцию 3).

Действительно, правая часть (2а) непрерывна по совокупности аргументов и существуют  ограниченные по модулю частные производные, т.к. функции  - непрерывны на отрезке [a,b] и, следовательно, ограничены по модулю. Таким образом, функция  удовлетворяет условию Липшица по всем переменным, начиная со второй.

Запишем линейное однородное уравнение

      

коротко в виде , где

                -

линейный дифференциальный оператор (линейное дифференциальное выражение).

Линейный дифференциальный оператор обладает свойствами:

1.

т.к. 

              

2.

т.к. 

Из 1) и 2) следует, что

где  – постоянные.

Опираясь на свойства линейного оператора L, установим ряд теорем о решениях линейных однородных дифференциальных уравнений (л. о. д. у.).

Теорема 1.

Если  является решением л. о. д. у.  , то и  , где С – произвольная постоянная, является решением того же уравнения.

Доказательство. В соответствии со свойством 1):

 , ч.т.д.

Теорема 2.

Сумма  решений л. о. д. у. L[y]=0 является решением того же уравнения.

Доказательство. Воспользуемся свойством 2)

ч. т. д.

Следствие. Линейная комбинация с произвольными постоянными коэффициентами  решений  л. о. д. у. L[y]=0 является решением того же уравнения.

Теорема 3.

Если л. о. д. у. L[y]=0 с действительными коэффициентами  имеет комплексное решение , то его действительная U(x) и мнимая V(x) части в отдельности являются решениями того же уравнения.

Доказательство. Используя свойства 1) и 2) имеем:

                

откуда L[U]0, L[V]0, т.к. комплексная величина тождественно равна нулю, тогда и только тогда, когда ее действительная и мнимая части тожественно равны нулю.

 Определение. Функции  называются линейно зависимыми (предполагается, что ни одна из функций  тождественно не равна нулю на [a,b]) на некотором отрезке axb если существуют постоянные числа  такие, что на этом отрезке

      ,                                     (3)

причем хотя бы одно .

Если тождество (3) справедливо лишь при , то функции  называются линейно независимыми на отрезке axb.

Пример 1.

Функции  линейно независимы на любом отрезке [a,b], т.к. тождество

 

возможно лишь, если все . Если  хотя бы одно , то слева стоял бы многочлен степени не выше n, который может иметь не более n различных корней и, следовательно, обращаться в нуль не более чем в n точках отрезка.

Пример 2.

Функции , где , если ij, линейно независимы на любом отрезке axb.

Допустим, что эти функции линейно зависимы, т.е.

,   

причем не все  равны нулю. Пусть, например, . Разделим тождество на , а результат продифференцируем, получим

Продолжая эту процедуру (т.е. деля на  и дифференцируя и т.д.) (n-1) раз, получим

         

что невозможно, т.к.  при ij, а  по предположению, т.к. в качестве  можно выбрать любой коэффициент, то свойство доказано.

Теорема 4.

Если функции  линейно зависимы на отрезке , то на этом  отрезке определитель Вронского

тождественно равен нулю.

Доказательство. Дано, что

                                                                     (4)

На отрезке [a,b], примем не все  равны нулю. Дифференцируя тождество (4) (n-1) раз, получим

                                                    (5)

Эта линейная алгебраическая система имеет нетривиальное решение (по предположению) при любом x[a,b]. следовательно, её определитель, являющийся определителем Вронского, тождественно равен нулю при  x[a,b], ч. т. д.

Теорема 5.

Если линейно независимые функции  являются решениями  л. о. д. у.

                                              (6)

c непрерывными на отрезке  коэффициентами , то определитель Вронского этой системы функций не может обратиться в нуль ни в одной точке отрезка.

 

Доказательство. Пусть в некоторой точке  отрезка [a,b] определитель Вронского . Выберем постоянные  так, чтобы удовлетворялась система уравнений. Рассмотрим систему алгебраических уравнений:

                      (7)

и чтобы не все  равнялись нулю. Это всегда возможно, т.к. опре-делитель системы (7) равен нулю, т.е. нетривиальное решение системы (7). При таком выборе  линейная комбинация

 

Будет решением л. о. д. у. (6), удовлетворяющим, в силу уравнений системы (7), нулевым начальным условиям

                                                   (8)

Таким условиям, очевидно, удовлетворяет тривиальное решение y=0 уравнения (6) и по теореме единственности начальным условиям (8) удовлетворяет только это решение. Следовательно,  и решения , вопреки условию теоремы, линейно зависимы.

 Замечание 1. Из теорем 4 и 5 следует, что линейно независимые на отрезке [a,b] решения  уравнения (6) линейно независимы и на любом отрезке .

 Замечание 2. В теореме 5, в отличие от теоремы 4 предполагалось, что функции  являются решениями л. о. д. у. (6) с непрерывными коэффициентами. Отказаться от этого требования и считать функции  произвольными (n-1) раз непрерывно дифференцируемыми нельзя. Легко привести примеры линейно независимых функций, не являющихся решениями уравнения (6) с непрерывными коэффициентами, для которых определитель Вронского не только обращается в нуль в некоторых точках, но даже тождественно равен нулю.

Теорема 6.

Общим решением при  л. о. д. у.

                                     (6)

с непрерывными на отрезке [a,b] коэффициентами , i=1,2,..,n, является линейная комбинация  из n линейно независимых на том же отрезке частных решений  с произвольными постоянными коэффициентами .

Доказательство. Уравнение (6) при x[a,b] удовлетворяет условиям теоремы существования  и единственности. Поэтому решение  при  будет общим, т.е. будет содержать все частные решения, если удастся подобрать произвольные постоянные  так, чтобы удовлетворялись произвольно заданные начальные условия

                                   (9)

где  - любая точка (a,b).

Из условия (9) получим систему n линейных относительно ,  i=1,..,n уравнений

                      

с n неизвестными , определитель которой отличен от нуля, т.к. это определитель Вронского  для n линейно независимых решений уравнения (6). Следовательно, эта система разрешима (и однозначно) относительно  при любом выборе  и при любых правых частях.

 Следствие. Максимальное число линейно независимых решений однородного линейного дифференциального уравнения равно его порядку.

 Замечание. Любые n линейно независимые частные решения л. о. д. у. n – ого порядка называются его фундаментальной системой решений.

      Для построения  фундаментальной системы решений произ-вольно зададим  чисел

 

Подчинив их лишь условию

      

где  любая точка (a,b). Тогда решения , определяемые начальными значениями  образуют фундаментальную систему, т.к. их определитель Вронского W(x) в точке  отличен от нуля и, следовательно, в силу теорем 4 и 5 решения  линейно независимы.

EMBED Photoshop.Image.5 \s

EMBED PBrush  

EMBED PBrush  

EMBED PBrush  

где , т.е. [a, b], поэтому , а, следовательно,

Приведенный выше пример функции , для которой условие

Липшица выполняется, но производная F(x) при x=0 не существует, говорит о том, что условие  является более грубым, чем условие Липшица.

Пример.

Д.у. II порядка

                      

Положим

Тогда получим нормальную систему д.у.

Пусть

             

Эквивалентная систему интегральных уравнений имеет вид:

             

Итерации:

            

Итак,

             

При x=/2:

             

Точное решение:

               

т.е.

Интегрируя это уравнение, находим С(y). Второй способ определения функции U(x,y) по её полному дифференциалу  состоит в вычислении криволинейного интеграла от   по некоторому пути от точки  до точки (x, y):

 Т.к. подынтегральное выражение – полный дифференциал, то интеграл не зависит от пути интегрирования.

Если путь интегрирования - ломаная со звеньями, параллельными осям координат, то

   

                        =

 Пример 1.

Это уравнение в полных дифференциалах, т.к.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

5017. Рыночная экономика: сущность, функции, механизм 149 KB
  Рыночная экономика: сущность, функции, механизм. На какой бы ступени исторического развития ни находилось человеческое общество, люди, чтобы жить, должны иметь пищу, одежду, жилищные и другие материальные блага. Необходимые человеку средства...
5018. Налогообложение в России 223 KB
  В течение ряда последних лет Российская Федерация переживает величайший экономический эксперимент - переход от планового управления народным хозяйством к использованию рыночных механизмов экономического развития. Новые экономические инстр...
5019. Менеджмент – как структура управления предприятием 143 KB
  В наше время появляется много фирм. Состояние фирмы во многом зависит от правильного руководства, правильного управления делами фирмы. Необходимо четко понимать, насколько устойчива фирма, и как долго она сможет противостоять различным внеш...
5020. Повышение эффективности обработки экономической информации на базе АРМ финансиста 326.5 KB
  Введение В связи с неустойчивым положением в стране в последнее время одной из немногих благополучных отраслей, переживающих период бурного роста, является компьютерная индустрия. Буквально за считанные годы в стране освоен массовый выпуск качествен...
5022. Види АРП приймальних пристроїв РЛС. Робота АРП із зворотним звязком 26.98 KB
  Усилители с автоматической регулировкой усиления (АРУ). Области применения АРУ. Мощность отраженного радиолокационного сигнала принимаемого от отражающего объекта, изменяется прямопропорционально четвертой степени дальности или удвоенного в...
5023. Современные представления происхождения Вселенной, теория Большого взрыва 93 KB
  Проблемы зарождения и существования Вселенной занимали самого древнего человека. Небо, которое было доступно его обозрению, было для него очень интересно. Недаром астрономия считается одной из самых древних наук о природе. Не потерял интере...
5024. Экологические проблемы развития автомобильного транспорта 993.5 KB
  Транспортно-дорожный комплекс является мощным источником загрязнения природной среды. Из 35 млн.т вредных выбросов 89% приходится на выбросы автомобильного транспорта и предприятий дорожно-строительного комплекса. Существенна роль транспорт...
5025. Аттестация государственных служащих 188 KB
  Каждый государственный и муниципальный служащий в течение своей жизни не раз столкнется с аттестацией, порой тревожным и психологически мучительным процессом, поэтому необходимо знать всю структуру аттестации и быть готовым к ней, быть во в...