21452

Линейные неоднородные дифференциальные уравнения

Лекция

Математика и математический анализ

Линейные неоднородные дифференциальные уравнения. Будем рассматривать линейные неоднородные уравнения вида 1 Это уравнение сохраняя прежние обозначения запишем в виде Если при в уравнении 1 все коэффициенты и правая часть fx непрерывны то оно имеет единственное решение удовлетворяющее условиям где – любые действительные числа а – любая точка интервала . Действительно правая часть уравнения 1 В окрестности рассматриваемых...

Русский

2013-08-02

256.5 KB

5 чел.

Лекция 7.

Линейные неоднородные дифференциальные уравнения.

Будем рассматривать линейные неоднородные уравнения вида

                                (1)

Это уравнение, сохраняя прежние обозначения, запишем в виде

 

Если при  в уравнении (1) все коэффициенты  и правая часть f(x) непрерывны, то оно имеет единственное решение, удовлетворяющее условиям

 

где  – любые действительные числа, а  – любая точка интервала .

Действительно, правая часть уравнения

               (1a)

В окрестности рассматриваемых начальных значений удовлетворяет условиям теоремы существования и единственности:

  1.  правая часть непрерывна по аргументам 
  2.  имеет ограниченные частные производные по всем

, т.к. эти производные равны непрерывным по предположению на отрезке [a, b] коэффициентам

На начальные значения  не налагается никаких ограничений.

Из 2-х основных свойств линейного оператора

 

где C=const, следует

  1.  Сумма  решения  неоднородного уравнения

                                                                                 (1)

и решения  соответствующего однородного уравнения L[y]=0 является решением неоднородного уравнения (1).

Доказательство.

                      

но , а , поэтому

 

  1.  Если  является решением уравнения ,

то  является решением уравнения

где  – постоянные.

Доказательство.

                                                                         (2)

но , поэтому 

Это свойство называется принципом суперпозиции. Оно сохраняется и при m, если ряд  сходится и допускает n- кратное почленное дифференцирование, т.к. при этом возможен предельный переход в (2).

3. Если уравнение  где все коэффициенты

 и функции U(x) и V(x) действительные, имеет решение , то действительная  и мнимая часть  решения  являются соответственно решениями уравнений L[y]=U(x); L[y]=V(x).

Доказательство.

                  

т.е.

                   

поэтому 

 Теорема. Общее решение на отрезке  уравнения L[y]=f(x) с непрерывными на этом отрезке коэффициентами и правой частью f(x) равно сумме общего решения  соответствующего однородного уравнения и какого – нибудь частного решения  неоднородного уравнения.

Доказательство. Требуется доказать, что

                                                                    (3)

где  – произвольные постоянные, а  - линейно независимые решения соответствующего однородного уравнения, является общим решением неоднородного уравнения L[y]=f(x).

Принимая во внимание свойство 1) и справедливость для рассматриваемого уравнения теоремы существования и единственности, надо доказать, что подбором постоянных  в (3) можно удовлетворить произвольно заданным начальным условиям.

                                        (4)

где . Требуя, чтобы решение (3) удовлетворяло условию (4), перейдем к системе уравнений

                                             (5)

Эта линейная по отношению к постоянным  система n уравнений с n неизвестными при произвольных правых частях допускает единственность решения, т.к. её определитель, будучи определителем Вронского  линейно независимой системы решений соответственного однородного уравнения с непрерывными коэффициентами отличен от нуля при  что и требовалось  доказать.

Пример.

           .

Одно частное решение y=x. Общее решение соответствующего однородного  уравнения имеет вид

 

Следовательно, общее решение исходного неоднородного уравнения

 

 Метод вариации произвольных постоянных.

 Этот метод применяется для решения неоднородных д. у. с непрерывными коэффициентами. В соответствии с этим методом решение неоднородного д. у. ищется в виде

                                                           (1)

т.е. в общем решении однородного д.у. коэффициенты  полагаются зависящими от x.

Так как подбором функций надо удовлетворить лишь одному уравнению

                                     (2)

То можно потребовать, чтобы эти n функций  удовлетворяли бы ещё каким – нибудь (n-1) уравнениям, которые мы выберем так, чтобы производные функции (1) имели бы по возможности такой же вид, какой они имеют при постоянных .

Итак, поскольку

           

то наложим на  условие 

                     

Тогда

   

Т.е. y имеет такой же вид, как и при постоянных . Теперь т.к.

           

То полагаем

            

Продолжая вычислять производные функции  до (n-1) – порядка включительно и требуя каждый раз обращения в нуль суммы :

                                             (3)

Получим

                                         (4)

В последнем равенстве мы не можем потребовать, чтобы , т.к. функции  уже подчинены (n-1) условиям (3), а надо ещё удовлетворить исходному уравнению (2). Подставляя  из (4) в уравнение (2), получим:

        

                  

Или

                   (5)

Все  являются частными решениями соответствующих однородных уравнений. Поэтому

 

 Таким образом, уравнение (5) принимает вид

 

Итак, функции  определяются из системы n линейных уравнений

                                                               (6)

с отличным от нуля определителем системы

 

Т.к. это – определитель Вронского для линейно независимых решений соответствующего однородного уравнения. Определив из (6) все , квадратурами находим 

Пример.

                       

В соответствии с методом вариации постоянных

                       

Причем  подчинены системе (6)

          

откуда

  т.е.

  т.е. 

Общее решение исходного уравнения, таким образом, имеет вид

 

Итак, знание n линейно независимых частных решений соответствующего однородного уравнения позволяет методом вариации постоянных проинтегрировать неоднородное уравнение

Если же известно лишь m, где m<n, линейно независимых решений  соответствующего однородного уравнения, то с помощью замены переменных можно понизить порядок уравнения до n-m, сохраняя его линейность.

Действительно, положим в уравнении

                                    (7)

                                     ,                                                             (*)

где  – частное решение уравнения (7).

В результате уравнение преобразуется к виду

                               (8)

Причем решению  уравнения (7) в силу (*) соответствует частное решение  уравнения (8). Подставив  в (8), получим . Следовательно, уравнение (8) имеет вид

           

и подстановка  понижает порядок на единицу

 

Подстановка , где  - решение уравнения (7) снижает на единицу и порядок неоднородного уравнения L[y]=f(x), т.к. подстановка не затрагивает правой части уравнения.

 Пример.

   

Метод Коши решения линейного неоднородного уравнения.

Этот метод позволяет найти частное решение уравнения

                                                                        (1)

если известно зависящее от одного параметра решение K(x, t) соответствующего однородного уравнения  удовлетворя-ющее условиям (n2)

                                       (2)

                                                                    (3)

В этом случае

                                                        (4)

Будет частным решением уравнения (1), удовлетворяющим нулевым начальным условиям

                     

Действительно, дифференцируя (4) и принимая во внимание условия (2) и (3), получим

                                            (5)

Подставляя (4) и (5) в уравнение (1), имеем

 

т.к. K(x, t) – решение соответствующего однородного уравнения, т.е. L[K(x, t)]0.

Решение K(x, t) может быть выделено из общего решения  однородного уравнения, если выбрать произвольные постоянные  так, чтобы удовлетворялись условия (2) и (3).

Пример.

Уравнение

                                                                                    (6)

Соответствующее однородное уравнение 

Имеет общее решение

Условия (2) и (3) приводят к следующим уравнениям

     

откуда

 

т.е. искомое решение K(x, t) имеет вид

 

Решение уравнения (6) с нулевыми начальными условиями в соответствии с (4) представимо в виде

 

Функцию K(x, t) называют в литературе функцией влияния.

.

Теперь, поскольку

, то     

откуда

 

Следовательно, общий интеграл имеет вид:

 

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

79990. ОПТИМИЗАЦИЯ ТОПОЛОГИИ НЕЙРОННОЙ СЕТИ, ИСПОЛЬЗУЕМОЙ ДЛЯ ПРЕДСКАЗАНИЯ ОЦЕНКИ ФИЛЬМА ПОЛЬЗОВАТЕЛЕМ, С ПРИМЕНЕНИЕМ ГЕНЕТИЧЕСКОГО ПРОГРАММИРОВАНИЯ 1.11 MB
  Перед использованием нейронных сетей необходимо сначала проанализировать задачу и выбрать подходящую топологию, а затем обучить на обучающей выборке данных. Создатель нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных.
79991. Интеграция DivX Plus Streaming с платформой Windows Phone 8 1.08 MB
  На основании информации которую предоставляют контакты из фильтров строится граф фильтров filter grph или медиаконвейер multimedi pipeline который производит все необходимые действия от открытия медиаконтейнера до визуализации его содержимого. Управлением графами фильтров занимается менеджер графа фильтров filter grph mnger. В других мультимедийных фреймворках с которыми знаком автор работы менеджер графа фильтров часто именуется сессией session или медиасессией medi session. Любой граф фильтров обладает следующими свойствами:...
79992. ВИЗУАЛИЗАЦИЯ ДАННЫХ РЫНКА НЕДВИЖИМОСТИ С ПОМОЩЬЮ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ 2.09 MB
  Важным инвестиционным направлением является коммерческая недвижимость. В основном аналитические агентства делают акцент на анализе рынка жилой недвижимости, оставляя «за кадром» весомый полигон экономических отношений – сектор коммерческой недвижимости. Это - торговые центры и магазины, офисы, склады, технические помещения, рекреационная недвижимость, земельные участки, платные автомобильные дороги и многие другие объекты.
79993. Разработка экстремальной экспедиции и её экономическая обоснованность 293.05 KB
  Научно теоретические основы выживания в экстремальных условиях Содержание и основные понятия стратегии выживания в экстремальных экспедициях. Факторы выживания. Основные критерии эффективности стратегии выживания в экстремальных экспедициях. Рассчитать необходимый объём продуктов и вещей необходимых для выживания в экстремальных условиях.
79994. ПРОБЛЕМЫ РАЗВИТИЯ СИСТЕМЫ СОЦИАЛЬНОГО ОБСЛУЖИВАНИЯ ПОЖИЛЫХ ЛЮДЕЙ В СОВРЕМЕННОЙ РОССИИ 268.5 KB
  Объективные предпосылки и пути развития социальной защиты пожилых людей. Социальные проблемы лиц пожилого возраста и их отражение в государственной социальной политике. Совершенствование управления деятельности Комитета социальной защиты населения Москвы и ОУСЗН по социальной защите.
79995. Шляхи вдосконалення фінансового планування на підприємстві 1.72 MB
  Підвищення ефективності фінансового планування ПрАТ «Моршинський завод мінеральних вод «Оскар» з використанням методів економіко-математичного моделювання. Визначення тенденцій розвитку фінансового стану підприємства на основі планових показників та оптимізація планових рішень
79996. Разработка кроссплатформенного программного инструментария для работы с платами сбора данных с интерфейсами PCI и USB для ЗАО «Руднев-Шиляев» 1 MB
  В данной дипломной работе был спроектирован и разработан кроссплатформенный программный инструментарий для работы с аппаратной продукцией ЗАО «Руднев-Шиляев». Под этот инструментарий была адаптирована пользовательская программа с графическим интерфейсом, реализующая функции осциллографа и спектроанализатора.
79998. Разработка эффективной стратегии развития объектов размещения 771 KB
  Разработана система стратегий, которые могут реализовать гостиничные предприятия: повышение уровня конкуренции, дифференциация услуг, фокусирование, стратегия продвижения; разработаны предложения по совершенствованию системы управления производственной деятельностью компании на основе прогрессивных подходов к решению задач управления и результатов управленческой практики ведущих отечественных предприятий...