21453

Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел

Лекция

Математика и математический анализ

Комплексные числа. Комплексные числа являются естественным обобщением понятия вещественных чисел. При этом числа x и y называются вещественной и мнимой частями соответственного комплексного числа z. Два комплексных числа и считаются равными между собой тогда и только тогда когда равны их вещественные и мнимые части т.

Русский

2013-08-02

392 KB

6 чел.

         Лекция 8.

Комплексные числа.

Комплексные числа являются естественным обобщением понятия вещественных чисел.

Поставим в соответствие каждой точке P плоскости пару чисел (x,y) – её координаты. Это можно сделать, введя комплексное число

                  .                               (1)

Такая запись соответствует тому, что вектор  можно представить как сумму векторов  и , т.е.

координата, отсчитываемая вдоль оси y помечается приписыванием символа ‘i’, называемого мнимой единицей.

При этом числа x и y называются вещественной и мнимой частями соответственного комплексного числа z.

Два комплексных числа  и  считаются равными между собой тогда и только тогда, когда равны их вещественные и мнимые части, т.е.

Как известно

 где                (2)

Обозначают  r=|z|=|x+iy| .

Таким образом, комплексное число z может быть задано также парой чисел: rмодулем и аргументом комплексного числа.

Равенство чисел состоит теперь в том, что равны их модули, а аргументы могут отличаться на величину, кратную 2.

Выражение комплексного числа через его модуль и аргумент имеет вид (см. (1) и (2))

                                                         (3)

Это запись комплексного числа в тригонометрической форме, причем r – длина вектора , определяющего комплексное число.

Сложение и вычитание комплексных чисел.

Сумма двух комплексных чисел  и  может быть найдена

как сумма соответствующих векторов:

    

       

т.е.       

                                          (4)

Это правило распространяется на любое число слагаемых. Справедливы переместительный и сочетательный законы.

Умножение комплексного числа на вещественное производится по правилу умножения вектора на число, т.е.

                                            (5)

где a – вещественное число.

Таким образом, вычитание комплексных чисел ,  сводится к сложению числа , с числом , т.е.

                               (6)

Т.к. длина любой стороны треугольника меньше суммы длин его других сторон, то

  

Аналогично

                                               (7)

Умножение комплексных чисел.

Вектор, соответствующий комплексному числу z,   

               

может быть получен из единичного вектора  путем удлинения его в  раз и поворота в положительном направлении на угол .

Поэтому умножение числа  на  соответствует удлинению вектора  в  раз и довороту его на угол . Таким образом,

                      (8)  

Распишем соотношение (8) в координатной форме:

       

Таким образом,

                       (9)

Если , то сомножители – вещественные числа, а произведение  – также вещественное число.

Если же , а , то из (9) имеем

                                                                     (10)

т.е. квадрат мнимой единицы равен (-1).

Из (10) получаем:

 

Т.е. при всяком целом n>0 имеем

Соотношение (9) можно сформулировать так: комплексные числа надо перемножать как буквенные многочлены, считая .

Число  называется комплексно сопряженным числу .

Из (9) имеем

                                 (11)

Для произведения комплексных чисел также справедливы переместительный и сочетательный законы.

Модуль произведения нескольких сомножителей равен произведению их модулей, а аргумент – сумме их аргументов.

Деление комплексных чисел.

Деление есть действие, обратное умножению, т.е.

               

т.к.

Модуль частного равен частному модуле делимого и делителя, а аргумент – равен разности их аргументов.

Формула (12) теряет смысл при .

Формула (12) могла быть получена следующим образом:

          

Поэтому

                           (13)

 Т.к. при сложении и умножении комплексных чисел сохраняются переместительный, сочетательный и распределительный законы, то остаются справедливыми и правило вынесения за скобки, простейшие формулы, формула бинома Ньютона для целых положительных показателей, формулы для прогрессии и другие.

Если в сумме, разности, произведении и частном заменить все числа сопряженными, то и результат будет сопряженное число.

Это свойство остается справедливым для любого выражения, содержащего комплексные числа, связанные знаками первых четырех действий.

Возведение в степень и извлечение корня.

Применение формулы (8) к n одинаковым сомножителям

                               (14)

При r=1 имеем формулу Моавра

                                          (15)

Корнем n – ой степени из комплексного числа называется такое число, n – ная степень которого равна подкоренному числу.

Таким образом, если

        

то           

откуда      

т.е.

                   

где  – арифметическое значение корня.

Итак,

                         (16)

Из (16) следует, что корень n – ой степени из числа имеет n различных значений. Действительно, при k=0,1,2,…,(n-1) значения корня будут разными, поскольку их аргументы различны, а при k=n,n+1,…. получим значения корня, совпадающие с первым (т.е. при k=0,1,..). Поскольку при n обходах начала координат (z=0) мы получаем n различных значений корня, то точку z=0 называют точкой ветвления функции .

Показательная функция и формула Эйлера.

Рассмотрим показательную функцию  при вещественном x 

                              

Положим

                              

Группируя слагаемые, получим

 

Поскольку

 

то

                                                          (17)

Это формула Эйлера. Заменив в ней y на (-y), получим

                                                         (18)

Из (17) и (18) имеем

   ,                         (19)  

Из (17) получаем показательную форму комплексного числа

                                              (20)

Показательная функция при любом комплексном показателе  определяется формулой

                               (21)   

т.е.

                                                          (22)   

Пусть , тогда

 

откуда

Окончательно,

                

Аналогично

             

В случае целого положительного (и отрицательного) n  

                                

Тригонометрические функции от комплексного z определяются при помощи формулы Эйлера

        

Легко доказать, что

        

       

Ввиду важности показательной функции дадим ещё одно её определение по аналогии с функцией вещественных переменных. Определим  как следующий предел

                                                                         (*)

При этом необходимо доказать существование предела последовательности комплексных чисел  при z и вычислить этот предел. По правилам возведения в степень имеем

          

Отбрасывая в первом выражении малую высшего порядка  и заменяя во втором малый угол его тангенсом , мы видим, что существуют

         и

Но из существования этих пределов следует существование предела (*), причем мы полагаем, что  (т.е. ), что совпадает с формулами (22).

Логарифмирование.

Натуральным логарифмом комплексного числа  называется показатель степени, в которую нужно возвести e, чтобы получилось это число, т.е.

 

если

 

и наоборот. Из последнего равенства следует

 

откуда   k=0,1,…

Т.е.  а

Окончательно

                                             (23)

Натуральный логарифм любого числа имеет бесчисленное множество значений (здесь z=0 – точка ветвления бесконечного порядка). Если мы потребуем, чтобы

         

то получим главное значение логарифма:

 

 Если U и V - два комплексных числа, то положим

        

т.е. комплексная степень комплексного числа имеет бесчисленное множество значений.


EMBED PBrush  

EMBED PBrush  

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

4675. Сети следующего поколения. Конспект лекций 8.99 MB
  Сети следующего поколения Введение Переход к пакетным технологиям при модернизации и построении новых сетей связи общего пользования (ССОП) стал настоятельно необходим. Традиционные операторы связи приступили к перестройке своих сетей с ориентацией...
4676. Использование анекдотов в процессе преподавания логики 229 KB
  Использование анекдотов в процессе преподавания логики Предисловие Наше Отечество переживает трудный, но объективно необходимый этап качественного социального, политического, экономического и духовного обновления. Сейчас уже понятно, что мы строим ц...
4677. Исследование явления дифракции электромагнитных волн 118 KB
  Цель работы Исследовать явление дифракции электромагнитных волн. С помощью дифракционной решетки проходящего света измерить длины электромагнитных волн видимого диапазона. Основные теоретические сведения Дифракцией называется совокупность явлений,...
4678. Повышение долговечности ходовой системы гусеничной лесозаготовительной машины 485.5 KB
  Повышение долговечности ходовой системы гусеничной лесозаготовительной машины Общая характеристика работы Актуальность темы. В России 720 миллионов гектаров территорий, покрытых лесом, из них 47% занимают труднопроходимые леса Сибири, Дальнего Восто...
4679. Элегазовый генераторный выключатель 10кВ, 63кА, 8000А 3.16 MB
  Элегазовый генераторный выключатель 10кВ, 63кА,8000А Введение В связи с необходимостью повышения номинальных параметров и надежности высоковольтного коммутационного оборудования для атомных электростанций необходима разработка современных генераторн...
4681. Мотивація, контроль та оцінка діяльності педагогів в шкільному менеджменті 605 KB
  Мотивація, контроль та оцінка діяльності педагогів у шкільному менеджменті Одним із важливих психологічних елементів управлінського процесу є мотивація, тобто спонукання керівником себе та інших до досягнення особистих цілей і цілей організації...
4682. Етика та етичні категорії 831.5 KB
  Походження і зміст термінів етика, мораль, моральність 1. Походження термінів 2. Зміст термінів 1. Термін етика походить від давньогрецького слова етос - дім, гніздо. Пізніше воно стало означати характер явища, його природу. Ари...
4683. Історія становлення філософії науки 38.05 KB
  Історія становлення філософії науки. Філософія і наука − два раціональні теоретичні способи освоєння дійсності. І це їх об’єднує. Однак форми освоєння дійсності у філософії та науці різні...