21454

Линейные однородные дифференциальные уравнения с постоянными коэффициентами

Лекция

Математика и математический анализ

Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Оператор L можно представить в следующем виде 1б где – корни характеристического уравнения 4 – их кратности. При n=2 имеем причем где – корни характеристического уравнения Далее Пусть теперь при некотором: где мы...

Русский

2013-08-02

234 KB

16 чел.

Лекция 9.

Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

Если в линейном однородном  дифференциальном уравнении

                                                   (1)

Все коэффициенты  постоянны, то его частные решения легко могут быть найдены.

Рассмотрим уравнение

                                                                               (2)

Это уравнение с разделяющимися переменными. Мы видели, что его частным решением является функция

                                                                                (3)

Пусть в (1)  (в противном случае уравнение (1) было бы уравнением  порядка, меньшего, чем n), тогда уравнение (1) можно привести к виду

                                     (1a)

где  , L – линейный оператор.

Оператор L можно представить в следующем виде

                 (1б)

где  – корни характеристического уравнения

                                                 (4)

a  – их кратности.

Представление оператора L в виде (1б) называется факторизацией этого оператора. Доказательство возможности подобной факторизации проводится по индукции. При n=2 имеем

                       

причем , где  – корни характеристического уравнения

Далее

                

  

Пусть теперь при некотором n2:

           

где мы занумеровали подряд все корни (с учетом их кратности) от 1 до n. Теперь

       

Уравнение (1а) в результате (с использованием представления (1б)) примет вид

                                                  (5)

Пусть сначала все корни  уравнения (4) – однократные, тогда, как видно из (5) L[y]=0, если   

                            

т.е.  (см. (3)), j=1,…,n – есть частные решения уравнения (1а).

Рассмотрим теперь случай, когда какой-нибудь корень, например, , имеет кратность . В этом случае требуется, чтобы

                                   (6)

Положим

                                                                     (7)

Тогда из (6) имеем

                   

И таким образом,

Теперь,

Воспользуемся методом подстановки:

тогда

т.е.

Таким образом,

.

Аналогично, при :

Снова полагаем (7), тогда

,

откуда

поэтому

.

Действуя по той же схеме, имеем

 

т.е.

значит,

,

т.е.  , а

Аналогично по индукции можно показать, что для r

,

а общее решение уравнения (1а) имеет, таким образом, следующий вид

                 (8)

где m – число различных корней характеристического уравнения (4).

Соотношение (8) является общим решением уравнения (1а), поскольку можно показать, что функции

                                                    (9)

где m – число различных корней характеристического уравнения (4), линейно независимы.

Можно не приводить уравнение (1) к виду (1а), а иметь дело непосредственно с ним, тогда  будут корнями характеристического уравнения

                                     (4a)

Покажем, что система функций (9) линейно независима на отрезке .

Доказывая от противного, допустим, что эти функции линейно зависимы. Тогда

                                  (10)

где  – многочлен степени не выше (, причем хотя бы один полином, например,  не равен нулю тождественно (т.е. хотя бы один из коэффициентов при , отличен от нуля). Разделим тождество (10) на  и продифференцируем  раз. Тогда первое слагаемое в тождестве (10) исчезнет, и мы получим линейную зависимость такого же вида, но с меньшим числом функций

                                                 (11)

При этом степени многочленов  и  совпадают, т.к. при дифференцировании произведения , получим , т.е. коэффициент при старшем члене многочлена  после дифференцирования приобретет лишь не равный нулю множитель q. В частности, совпадают степени многочленов  и , и, следовательно, многочлен  не равен нулю тождественно. Деля тождество (11) на  и дифференцируя  раз, получим линейную зависимость с ещё меньшим числом функций. Продолжая этот процесс m-1 раз, получим

                 

что невозможно, т.к. степень многочлена  равна степени многочлена  и, следовательно, многочлен  не равен нулю тождественно.

Доказательство не изменится и при комплексных .  

        Пример.

Характеристическое уравнение имеет вид : его корни . Таким образом, общее решение имеет вид

     Т.к. коэффициенты уравнения (1) действительны, то комплексные корни характеристического уравнения могут появляться лишь сопряженными парами.

Комплексные решения , соответствующие паре комплексно сопряженных корней

                                                                            (12)

могут быть заменены двумя действительными решениями (см. теорему 3 лекции 7)

             .

Таким образом, паре комплексно сопряженных корней (12) соответствуют два действительных решения .

Линейные неоднородные уравнения с постоянными коэффициентами и специальным видом правой части.

Вообще говоря, при решении линейных неоднородных диф-ференциальных уравнений применяют метод вариации постоянных или метод Коши. В случае уравнения с постоянными коэффициентами часто легко удается подобрать частные решения и тем самым свести задачу к решению соответствующего однородного уравнения. Пусть, например, уравнение имеет вид

                       (1)

где все  – постоянные.

Если , то частное решение уравнения (1), также имеющее вид многочлена степени p. Действительно, подставляя

в уравнение (1) и, приравнивая коэффициенты при одинаковых степенях x слева и справа, (т.к.  – линейно независимы) получаем для определения коэффициентов  всегда разрешимую, если  систему линейных уравнений:

откуда определяется  и т.д.

откуда определяется .

Итак, если , то существует частное решение, имеющее вид многочлена, степень которого равна степени многочлена, стоящего в правой части.

Пусть теперь , а также , но , т.е. является r - кратным корнем характеристического уравнения, причем может быть r=1. Уравнение (1) принимает вид

                     (2)               

Полагая , мы приходим к предыдущему случаю, и, следовательно, частное решение уравнения (2), для которого

а значит y(x) является многочленом степени p+r, причем члены, начиная со степени (r-1) и ниже будут иметь произвольные постоянные коэффициенты, которые могут быть выбраны, в частности, равными нулю. Тогда частное решение примет вид

Пример.

                                                                  (3)

Частное решение имеет вид

Подставляя в (3) и приравнивая коэффициенты при одинаковых степенях x, получим

 

Общее решение

             

                                

Тригонометрические функции от комплексного z определяются при помощи формулы Эйлера

        

Легко доказать, что

        

       

Ввиду важности показательной функции дадим ещё одно её определение по аналогии с функцией вещественных переменных. Определим  как следующий предел

                                                                         (*)

При этом необходимо доказать существование предела последовательности комплексных чисел  при z и вычислить этот предел. По правилам возведения в степень имеем

          

Отбрасывая в первом выражении малую высшего порядка  и заменяя во втором малый угол его тангенсом , мы видим, что существуют

         и

Но из существования этих пределов следует существование предела (*), причем мы полагаем, что  (т.е. ), что совпадает с формулами (22).

Логарифмирование.

Натуральным логарифмом комплексного числа  называется показатель степени, в которую нужно возвести e, чтобы получилось это число, т.е.

 

если

 

и наоборот. Из последнего равенства следует

 

откуда   k=0,1,…

Т.е.  а

Окончательно

                                             (23)

Натуральный логарифм любого числа имеет бесчисленное множество значений (здесь z=0 – точка ветвления бесконечного порядка). Если мы потребуем, чтобы

         

то получим главное значение логарифма:

 

 Если U и V - два комплексных числа, то положим

        

т.е. комплексная степень комплексного числа имеет бесчисленное множество значений.


EMBED PBrush  

EMBED PBrush  

Интегрирующий множитель.

      В некоторых случаях левая часть уравнения

                                                                                (5)

не является полным дифференциалом, однако можно подобрать функцию (x, y), после умножения на которую левая часть уравнения (5) превращается в полный дифференциал

,

т.е.     .

Такая функция называется интегрирующим множителем. Заметим, что умножение на интегрирующий множитель (x, y) может привести к появлению лишних частных решений, обращающих этот множитель в нуль. Интегрирующий множитель всегда существует локально (Из теоремы о существовании и единственности (см. ниже) следует, что (5) имеет единственное решение, если  удовлетворяет условиям теоремы). Пусть U(x, y)=C – общий интеграл уравнения (5), тогда

,   т.е.  , откуда

Поэтому

,

т.е. - интегрирующий множитель).

Заметим, что найти его в явном виде, вообще говоря, трудно.

Пример 2.

                     .                                     (9)

Здесь . Действительно

                             ,

т.к.

                            ,

то это уравнение в полных дифференциалах, поэтому, интегрируя, имеем:

       

                      т.е.

                                                        .

Итак,

                                         

откуда окончательно имеем

                                             

Это решение удовлетворяет уравнению (9).

6

PAGE  9


 

А также другие работы, которые могут Вас заинтересовать

36292. Журнализация изменений БД, файл журнала, контрольные точки 31.5 KB
  Это требование предполагает возможность восстановления согласованного состояния базы данных после любого программного или аппаратного сбоя. Типичная СУБД должна предоставлять такие функции восстановления как: механизм резервного копирования предназначенный для периодического создания копий базы данных; средства ведения журнала в котором фиксируются текущее состояние транзакций и вносимые в базы данных изменения; функция создания контрольных точек обеспечивающая перенос выполняемых в базе данных изменений во вторичную помять с целью...
36293. Восстановление базы данных 28 KB
  При этом надо устранить последствия операторов модификации базы данных которые выполнялись в этой транзакции. Ситуация характеризуется потерей той части базы данных которая к моменту сбоя содержалась в буферах оперативной памяти. Восстановление после поломки основного внешнего носителя базы данных жесткий сбой.
36294. Техническое задание. Основные разделы 36.5 KB
  Техническое задание это документ определяющий цели требования и основные исходные данные необходимые для разработки автоматизированной системы управления. требования к программе или программному изделию; требования к функциональным характеристикам; требования к составу выполняемых функций организации входных и выходных данных временным характеристикам требования к надежности; требования к обеспечению надежного функционирования обеспечения устойчивого функционирования контроль входной и выходной информации время восстановления...
36295. Состав и содержание работ на стадиях внедрения, эксплуатации и сопровождения проекта 39.5 KB
  Недостатком первого подхода является увеличение длительности внедрения что ведет за собой рост стоимости проекта. При использовании второго подхода сокращается время внедрения но возникает возможность пропуска ошибок в проектной документации поэтому чаще всего используют смешанный метод внедрения проекта ЭИС. Внедрение проекта осуществляется в течение трех этапов: подготовка объекта к внедрению; опытное внедрение; сдача проекта в промышленную эксплуатацию.
36296. САSЕ – средства, классификация 26 KB
  Аббревиатура САSЕ Соmputеrаidеd Softwre Епgineering автоматизированная разработка ПО обозначает специальный тип программного обеспечения предназначенного для поддержки отдельных этапов создания ПО таких как разработка требований проектирование кодирование и тестирование программ. Поэтому к САSЕсредствам относятся редакторы проектов словари данных компиляторы отладчики средства построения систем и т. САSЕтехнологии предлагают поддержку процесса создания ПО путем автоматизации которых этапов разработки а также создания и...
36297. Типы пользовательского интерфейса 27.5 KB
  Процедурно-ориентированный интерфейс использует традиционную модель взаимодействия с пользователем основанную на понятиях процедура и операция. Объектно-ориентированные интерфейсы используют модель взаимодействия с пользователем ориентированную на манипулирование объектами предметной области. Процедурноориентированные интерфейсы: 1Обеспечивает пользователю функции необходимые для выполнения задач; 2Акцент делается на задачи; 3Пиктограммы представляют приложения окна или операции; 4Содержание папок и справочников отражается с...
36298. Понятие рекурсии. Прямая и косвенная рекурсия 23.5 KB
  Рекурсия – это такой способ организации программы когда процедура или функция в ходе выполнения составляющих ее операторов обращается сама к себе. Примером программы с использованием рекурсии может быть программа вычисления факториала числа. Программы которые используют рекурсивные процедуры отличаются простотой наглядностью и компактностью текста. Максимальное число рекурсивных вызовов процедуры без возвратов которое происходит во время выполнения программы называется глубиной рекурсии.
36299. Работа с динамическими переменными 394 KB
  Использование идентификатора указателя в программе означает обращение к адресу ячейки памяти на которую он указывает. Выделение и освобождение памяти под динамические переменные выполняется стандартными процедурами New Dispose во время работы программы. Р В неопределенном состоянии указатель бывает в начале работы программы до первого присваивания ему или конкретного адреса или пустого адреса nil а также после освобождения области памяти на которую он указывает. b:=nil; Процедура New: выделяет область памяти соответственно тому...
36300. Теория автоматического управления 3.73 MB
  Управление по возмущению управление без обратной связи по регулируемой величине – разомкнутые системы управления. Управление по отклонению управление с обратной связью по регулируемой величине – замкнутые системы управления. Управление в разомкнутых системах может осуществляться: а в виде программного управления: при этом регулятор УУ действует по заранее заданной жесткой программе.