21472

Оптическая мышка

Лекция

Физика

До появления этих мышей да и еще долго после этого большинство массовых компьютерных грызунов были оптомеханическими перемещения манипулятора отслеживались оптической системой связанной с механической частью двумя роликами отвечавшими за отслеживание перемещения мыши вдоль осей Х и Y; эти ролики в свою очередь вращались от шарика перекатывающегося при перемещении мыши пользователем. На основании анализа череды последовательных снимков представляющих собой квадратную матрицу из пикселей разной яркости интегрированный DSP...

Русский

2013-08-02

277 KB

30 чел.

Лекция № 10 Оптическая мышка

Привычные для нас сегодня оптические мыши ведут свою родословную с 1999 года, когда в массовой продаже появились первые экземпляры таких манипуляторов от Microsoft, а через некоторое время и от других производителей. До появления этих мышей, да и еще долго после этого, большинство массовых компьютерных «грызунов» были оптомеханическими (перемещения манипулятора отслеживались оптической системой, связанной с механической частью — двумя роликами, отвечавшими за отслеживание перемещения мыши вдоль осей Х и Y; эти ролики, в свою очередь, вращались от шарика, перекатывающегося при перемещении мыши пользователем). Хотя встречались и чисто оптические модели мышей, требовавшие для своей работы специального коврика. Впрочем, такие устройства встречались не часто, да и сама идея развития подобных манипуляторов постепенно сошла на нет.

«Вид» знакомых нам нынче массовых оптических мышек, базирующихся на общих принципах работы, был «выведен» в исследовательских лабораториях всемирно известной корпорации Hewlett-Packard. Точнее, в ее подразделении Agilent Technologies, которое только сравнительно недавно полностью выделилось в структуре корпорации НР в отдельную компанию. На сегодняшний день Agilent Technologies, Inc. — монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine .  

«Зрение» оптическая компьютерная мышь получает благодаря следующему процессу. С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы — процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей Х и Y, и передает результаты своей работы вовне по последовательному порту.

Если мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

  •  основной блок, это, конечно же, Image Processor — процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
  •  Voltage Regulator And Power Control — блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
  •  Oscillator — на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
  •  Led Cоntrоl — это блок управления светодиодом, с помощью которого подсвечивается поверхность по мышью;
  •  Serial Port — блок передающий данные о направлении перемещения мыши вовне микросхемы.

Некоторые детали работы микросхемы оптического сенсора будут рассмотрены чуть далее, когда доберемся к самому совершенному из современных сенсоров, а пока вернемся к базовым принципам работы оптических систем слежения за перемещением манипуляторов.

Нужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Именно по причине наличия этой «второй» микросхемы-контроллера, точнее благодаря разным типам таких микросхем, довольно заметно отличались между собой уже первые модели оптических мышей. Если о дорогих устройствах от Microsoft и Logitech слишком плохо отозваться я не могу (хотя и они не были вовсе «безгрешны»), то масса появившихся вслед за ними недорогих манипуляторов вела себя не вполне адекватно. При движении этих мышей по обычным коврикам курсоры на экране совершали странные кульбиты, скакали чуть ли не на пол-Рабочего стола, а иногда они даже отправлялись в самостоятельное путешествие по экрану, когда пользователь совершенно не трогал мышь.

Итак, причина столь разительного отличия в поведении оптических мышей была вовсе не в «плохих» или «хороших» установленных сенсорах, как до сих пор думают многие. В ведущие себя совершенно по-разному мыши часто устанавливались совершенно одинаковые микросхемы оптических сенсоров (благо, моделей этих чипов было не так уж много, как мы увидим далее). Однако вот, благодаря несовершенным чипам контроллеров, устанавливаемых в оптические мыши, мы имели возможность сильно поругать первые поколения оптических грызунов.

В целом система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше).

В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже.

Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров. Вот вам и первая причина, почему оптические мыши плохо себя чувствуют «ползая» по оргстеклу на столе, всевозможным «полупрозрачным» коврикам и т. п. И не стоит клеить на оптические мыши «толстые» ножки, когда отваливаются или стираются старые. Мышь из-за чрезмерного «возвышения» над поверхностью может впадать в состояние ступора, когда «расшевелить» курсор после пребывания мыши в состоянии покоя становится довольно проблематично.  

Кстати, о проблеме долговечности оптических мышей. Помниться, некоторые их производители утверждали что, дескать «они будут служить вечно». Да надежность оптической системы слежения высока, она не идет ни в какое сравнение с оптомеханической. В то же время в оптических мышах остается много чисто механических элементов, подверженных износу точно так же, как и при господстве старой доброй «оптомеханики». Исходя из этого, мы смело можем констатировать, что слухи о якобы впечатляющей долговечности оптических мышей не нашли своего подтверждения на практике. Да и зачем, скажите на милость, оптическим мышам «жить» слишком долго? Ведь на рынке постоянно появляются новые, более совершенные модели, созданные на новой элементной базе. Они заведомо совершеннее и удобнее в использовании.

Инженеры-разработчики компании Agilent Technologies, Inc. за пять лет преобразовали оптические сенсоры.   

Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000 (рис. 8). Эти сенсоры имели разрешение 400 cpi (counts per inch), то бишь точек (пикселей) на дюйм, и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров за секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши «в рывке» для чипа HDNS-2000 — не более 0.15 g (примерно 1.5 м/с2).

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620. Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту «съемки» поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g, при частоте «фотографирования» поверхности в 1500 кадров/с. Данный чип (ADNS-2620) также имел всего 8 ножек, что позволило существенно сократить его размеры по сравнению с микросхемой ADNS-2610 (16 контактов), внешне похожей на HDNS-2000. В Agilent Technologies, Inc. задались целью «минимизировать» свои микросхемы, желая сделать последние компактнее, экономнее в энергопотреблении, а потому и удобнее для установки в «мобильные» и беспроводные манипуляторы.

Микросхема ADNS-2610 хотя и являлась «большим» аналогом 2620-й, но была лишена поддержки «продвинутого» режима 2300 снимков/с. Кроме того, этот вариант требовал 5В питания, тогда как чип ADNS-2620 обходился всего 3.3 В.

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610, хотя внешне (упаковкой) был также на них похож. Этот сенсор уже позволял программируемо управлять «разрешением» оптического датчика, изменяя таковое с 400 до 800 сpi. Вариант микросхемы также допускал регулировку частоты снимков поверхности, причем позволял менять ее в очень широком диапазоне: 500, 1000,1500, 2000 или 2300 снимков/с. А вот величина этих самых снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши при «рывке» составляло по прежнему 0.15 g, максимально возможная скорость перемещения — 14 дюймов/с (т. е. 35.5 см/с). Данный чип был рассчитан на напряжение питания 5 В.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя всего 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя ( power conservation mode during times of no movement), переход в режим «сна», в том числе при подключении мыши по USB интерфейсу, и т.д.. Мышь, впрочем, могла работать и не в энергосберегающем режиме: значение «1» в бите Sleep одного из регистров чипа заставляло сенсор «всегда бодрствовать», а значение по умолчанию «0» соответствовало режиму работы микросхемы, когда по прошествии одной секунды, если мышь не перемещалась (точнее после получения 1500 совершенно одинаковых снимков поверхности) сенсор, напару с мышью, переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051: тот же 16-и контактный корпус, скорость перемещения до 14 дюймов/с при максимальном ускорении 0.15 g, программируемое разрешение 400 и 800 cpi соответственно, частоты осуществления снимков могли быть точно такими же, как и у вышерассмотренного варианта микросхемы.

Такими были первые оптические сенсоры. К сожалению, им были свойственны недостатки. Большой проблемой, возникающей при передвижением оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши.

В итоге и курсор на экране перемещался не так, как требовалось. Указатель на экране даже становился способен на экспромт :) — на непредсказуемые перемещения в произвольном направлении. Кроме того, легко догадаться, что при слишком быстром перемещении мыши сенсор мог вообще утратить всякую «связь» между несколькими последующими снимками поверхности. Что порождало еще одну проблему: курсор при слишком резком перемещении мыши либо дергался на одном месте, либо происходили вообще «сверхъестественные») явления, например, с быстрым вращением окружающего мира в игрушках. Было совершенно ясно, что для человеческой руки ограничений в 12-14 дюймов/с по предельной скорости перемещения мыши явно мало. Также не вызывало сомнений, что 0.24 с (почти четверть секунды), отведенные для разгона мыши от 0 до 35.5 см/с (14 дюймов/с — предельная скорость) это очень большой промежуток времени, человек способен двигать кистью значительно быстрее. И потому при резких движениях мыши в динамичных игровых приложениях с оптическим манипулятором может придтись несладко…

Понимали это и в Agilent Technologies. Разработчики осознавали, что характеристики сенсоров надо кардинально улучшать. В своих изысканиях они придерживались простой, но правильной аксиомы: чем больше снимков в секунду сделает сенсор, тем меньше вероятность того, что он потеряет «след» перемещения мыши во время совершения пользователем компьютера резких телодвижений :)

Хотя, как мы видим из вышеизложенного, оптические сенсоры и развивались, постоянно выпускались новые решения, однако развитие в этой области можно смело назвать «очень постепенным». По большому счету, кардинальных изменений в свойствах сенсоров так и не происходило. Но техническому прогрессу в любой области порой свойственны резкие скачки. Случился такой «прорыв» и в области создания оптических сенсоров для мышей. Появление оптического сенсора ADNS-3060 можно считать действительно революционным.

Оптический сенсор ADNS-3060, по сравнению со своими «предками», обладает поистине впечатляющим набором характеристик. Использование этой микросхемы, упакованной в корпус с 20-ю контактами, обеспечивает оптическим мышам невиданные ранее возможности. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с (то есть почти в 3 раза !), т.е. достигла «знаковой» скорости в 1 м/с. Это уже очень хорошо — вряд ли хоть один пользователь двигает мышь с превышающей данное ограничение скоростью столь часто, чтобы постоянно чувствовать дискомфорт от использования оптического манипулятора, в том числе это касается и игровых приложений. Допустимое же ускорение выросло, страшно сказать, во сто раз (!), и достигло величины 15 g (почти 150 м/с2). Теперь на разгон мыши с 0 до предельных 1 м/с пользователю отводится 7 сотых секунды — думаю, теперь очень немногие сумеют превзойти это ограничение, да и то, вероятно, в мечтах) Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с, т.е. «бьет» предыдущий «рекорд» почти в три раза. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. «Разрешение» оптического сенсора по прежнему может составлять 400 или 800 cpi. Давайте на примере микросхемы ADNS-3060 рассмотрим общие принципы работы именно чипов оптических сенсоров.

Общая схема анализа перемещений мыши не изменилась по сравнению с более ранними моделями — полученные блоком IAS сенсора микроснимки поверхности под мышью обрабатываются затем интегрированным в этой же микросхеме DSP (процессором), который определяет направление и дистанцию перемещения манипулятора. DSP вычисляет относительные величины смещения по координатам Х и Y, относительно исходной позиции мыши. Затем внешняя микросхема контролера мыши (для чего он нужен, мы говорили ранее) считывает информацию о перемещении манипулятора с последовательного порта микросхемы оптического сенсора. Затем уже этот внешний контроллер транслирует полученные данные о направлении и скорости перемещения мыши в передаваемые по стандартным интерфейсам PS/2 или USB сигналы, которые уже от него поступают к компьютеру.

Но вникнем чуть глубже в особенности работы сенсора. Блок-схема чипа ADNS-3060 представлена выше. Как видим, принципиально его структура не изменилась, по сравнению с далекими «предками». 3.3 В питание к сенсору поступает через блок Voltage Regulator And Power Control, на этот же блок возложена функции фильтрации напряжения, для чего используется подключение к внешнему конденсатору. Поступающий с внешнего кварцевого резонатора в блок Oscillator сигнал(номинальная частота которого 24 МГц, для предыдущих моделей микросхем использовались более низкочастотные задающие генераторы) служит для синхронизации всех вычислительных процессов, протекающих внутри микросхемы оптического сенсора. Например, частота снимков оптического сенсора привязана к частоте этого внешнего генератора (кстати, на последний наложены не весьма жесткие ограничения по допустимым отклонениям от номинальной частоты — до +/- 1 МГц). В зависимости от значения, занесенного по определенному адресу (регистру) памяти чипа, возможны следующие рабочие частоты осуществления снимков сенсором ADNS-3060.

Значение регистра, шестнадцатеричное

Десятичное значение

Частота снимков сенсора, кадров/с

OE7E

3710

6469

12C0

4800

5000

1F40

8000

3000

2EE0

12000

2000

3E80

16000

1500

BB80

48000

500

Как нетрудно догадаться, исходя из данных в таблице, определение частоты снимков сенсора осуществляется по простой формуле: Частота кадров = (Задающая частота генератора (24 МГц)/Значение регистра отвечающего за частоту кадров).

Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, цвет каждого из которых закодирован 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя). Таким образом, каждый поступающий в DSP процессор кадр (фрейм) представляет собой последовательность из 900 байт данных. Но «хитрый» процессор не обрабатывает эти 900 байт кадра сразу по поступлении, он ждет, пока в соответствующем буфере (памяти) накопится 1536 байт сведений о пикселях (то есть добавится информация еще о 2/3 последующего кадра). И только после этого чип приступает к анализу информации о перемещении манипулятора, путем сравнения изменений в последовательных снимках поверхности.

С разрешением 400 или 800 пикселей на дюйм их осуществлять, указывается в бите RES регистров памяти микроконтроллера. Нулевое значение этого бита соответствует 400 cpi, а логическая единица в RES переводит сенсор в режим 800 cpi.

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей X и Y, занося конкретные данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через Serial Port может «черпать» эти сведения из памяти оптического сенсора с частой примерно раз в миллисекунду. Заметьте, только внешний микроконтроллер может инициализировать передачу таких данных, сам оптический сенсор никогда не инициирует такую передачу. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера. Данные от оптического сенсора передаются пакетами по 56 бит.

Ну а блок Led Cотtrоl, которым оборудован сенсор, ответственен за управление диодом подсветки — путем изменения значения бита 6 (LED_MODE) по адресу 0x0a микропроцессор оптосенсора может переводить светодиод в два режима работы: логический «0» соответствует состоянию «диод всегда включен», логическая «1» переводит диод в режим «включен только при необходимости». Это важно, скажем, при работе беспроводных мышей, так как позволяет экономить заряд их автономных источников питания. Кроме того, сам диод может иметь несколько режимов яркости свечения.

На этом, собственно, все с базовыми принципами работы оптического сенсора. Что еще можно добавить? Рекомендуемая рабочая температура микросхемы ADNS-3060, впрочем как и всех остальных чипов этого рода, — от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 0С до +85 0С.

3.4 Лазерное будущее

Недавно сеть наполнили хвалебные статьи о мыши Logitech MX1000 Laser Cordless Mouse, в которой для подсветки поверхности под мышью использовался инфракрасный лазер. Обещалась чуть ли не революция в сфере оптических мышей. Увы, лично попользовавшись этой мышью, я убедился, что революции не произошло. Но речь не об этом.

За «новой революционной лазерной технологией» стоит сенсор ADNS-3060. Ибо, характеристики сенсора этой мыши ничем не отличаются от таковых, скажем, модели Logitech МХ510. Вся «шумиха» возникла вокруг утверждения на сайте компании Logitech о том, что с помощью лазерной системы оптического слежения выявляется в двадцать раз (!) больше деталей, чем с помощью светодиодной технологии. На этой почве даже некоторые уважаемые сайты опубликовали фотографии неких поверхностей, дескать, как видят их обычные светодиодные и лазерные мыши)

Конечно, эти фото были не теми разноцветными яркими цветочками, с помощью которых нас пыталась убедить на сайте Logitech в превосходстве лазерной подсветки системы оптического слежения. Нет, конечно же, оптические мыши не стали «видеть» ничего подобного на приведенные цветные фотографии с разной степенью детализации — сенсоры по-прежнему «фотографируют» не более чем квадратную матрицу серых пикселей, отличающихся между собой лишь разной яркостью (обработка информации о расширенной цветовой палитре пикселей непомерным грузом легла бы на DSP).

Для получения в 20 раз более детализированной картинки, нужно в двадцать раз больше деталей, передать которые могут только дополнительные пиксели изображения, и ни что иное. Известно, что Logitech MX 1000 Laser Cordless Mouse делает снимки 30х30 пикселей и имеет предельное разрешение 800 cpi. Следовательно, ни о каком двадцатикратном росте детализации снимков речи быть не может. Давайте попробуем разобраться, что послужило причиной появления подобного рода информации.

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять — от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного —«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения — для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода — т.е. изображение будет более контрастными.

И действительно, если мы посмотрим на реальные снимки поверхности, сделанные обычной светодиодной оптической системой, и системой с использованием лазера, то увидим, что «лазерный» вариант куда более контрастен — отличия между темными и яркими участками снимка более значительны. Безусловно, это может существенно облегчить работу оптическому сенсору и, возможно, будущее именно за мышами с лазерной системой подсветки. Но назвать подобные «лазерные» снимки в двадцать раз более детализированными вряд ли можно. Так что это еще один «новорожденный» миф.

Какими будут оптические сенсоры ближайшего будущего? Сказать трудно. Вероятно, они перейдут таки на лазерную подсветку, а в сети уже ходят слухи о разрабатываемом сенсоре с «разрешением» 1600 cpi. Нам остается только ждать.

На рис. 9 представлены результаты эксперимента, показывающие, как по мере расширения спектра излучения повышается разрешающая способность волоконно-оптического гироскопа. Таким образом, в волоконно-оптических гироскопах уменьшение когерентности источника света эффективно для снижения не только шумов расстояния Рэлея, но и шумов эффекта Керра.

В настоящее время разработаны экспериментальные системы, в которых приняты меры по повышению чувствительности и по снижению шумов. В этих системах, работающих по методу фазовой модуляции, изменения частоты и светового гетеродинирования, достигнута разрешающая способность, позволяющая измерять скорости, равные или меньшие скорости собственного вращения Земли (15/ч=7,310-5 рад/с). Особенно велики достижения в системах с фазовой модуляцией, у которых разрешающая способность и дрейф примерно 0,02/ч, что приемлемо для инерциальной навигации.

Исследуется возможность реализации гироскопов с использованием технологии микрооптики, функциональных волоконных и волноводных элементов. Уже выпускаются волоконно-оптические гироскопы с разрешающей способностью 1/ч. Кроме того, углубляется изучение систем, пригодных для инерциальной навигации.

 Система с фазовой модуляцией

Рис. 10.  Волоконно-оптический гироскоп с фазовой модуляцией, выполненный на волоконных функциональных элементах

На рис. 10 представлена оптическая система гироскопа, разработанная в Стаффордском университете, на одномодовом оптическом волокне, подвергнутом в некоторых местах специальной  обработке, а именно: регулятор поляризационного типа, направленный ответвитель, поляризатор, фазовый модулятор и другие — функциональные элементы на оптическом волокне, полученные путем его обработки. Paдиyc кольца из оптического волокна 7 см, длина волокна 580 м.  Таким образом, в гироскопе устранено отражение от поверхностей различных элементов оптической системы. К тому же использование многомодового полупроводникового лазера в качестве источника света снижает когерентность системы и тем самым уменьшает шумы, обусловленные рассеянием Рэлея. Уменьшению этих шумов способствует и то, что система выполнена по принципу фазовой модуляции. В гироскопе, показанном на рис. 10, достигается разрешающая способность 0,022/ч (рис. 11, а). При этом время интегрирования составляет 1 с. Путем специальной намотки оптического волокна ослабляется влияние температурных колебаний, а с применением магнитного экрана и многомодового полупроводникового лазера снижается дрейф, обусловленный эффектом Керра, и уменьшаются колебания нулевой точки (рис. 11, б, 0,02/ч, при времени интегрирования 30 с).

Рис. 11. Разрешающая способность (а) и характеристика стабилизации нулевой точки (б) волоконно-оптического гироскопа (рис.10)

Для уменьшения колебаний поляризации предложена фазовая модуляция выходного сигнала с использованием основной волны и второй гармоники, а также метод, при котором измеряются гармоники выходного сигнала светоприемника и составляющая постоянного тока, затем выделяется расчетным путем флюктуационная составляющая масштабного коэффициента. Пробуют также вводить в систему оптическое волокно с сохранением поляризации, выполнять фазовый модулятор с направленными ответвителями, а остальные элементы  — в виде волноводных устройств. Эксперименты с такими гироскопами дают разрешающую способность от 0,02 до нескольких градусов в час (время интегрирования 1 с). Для повышения разрешающей способности и уменьшения дрейфа нуля эффективно также использование суперлюминесцентного диода, обладающего низкой когерентностью (ширина волнового спектра когерентности 20 мкм).

Рис.12.  Гироскоп со световым квазигетеродинированием

На рис. 12, а представлена система, в которой: сигнал возбуждения фазового модулятора формируется путем интегрирования пилообразного напряжения и на выходе подучается сигнал квазигетеродинирования. На рис. 12, б показано изменение фазы электрического сигнала переменного тока при вращении гироскопа. Имеются и другие попытки реализации квазигетеродинного светового метода на основе фазовой модуляции. Например, система комбинируется со схемой обработки фазы (см. рис. 7), что позволяет расширить динамический диапазон и стабилизировать масштабный коэффициент, т. е. компенсировать недостатки метода  фазовой модуляции. В этой системе требуется точная установка параметров формы модулирующего сигнала и трудно добиться технических характеристик, удовлетворяющих инерциальную навигацию. Путем манипуляций с формой модулирующего сигнала практически реализуется нулевой метод, но при этом возникает проблема со стабилизацией нулевой точки.

В любом случае система с фазовой модуляцией превосходит  другие системы по разрешающей способности и стабильности нулевой точки и к тому же относительно проста. Поэтому расширяются работы по миниатюризации этой системы путем создания волоконных и волноводных функциональных оптических элементов, приборов интегральной оптики. В частности, западногерманская фирма SEL уже выпускает гироскопы с разрешающей способностью около 15/ч и линейностью в пределах 1, где для фазового модулятора используются волноводные оптические элементы. Длина волокна 100 м, радиус чувствительности катушки из оптического волокна около 3,5 см, габариты 808025 мм, масса 200 г.

 Системы с изменением частоты

Рис.13, а. Структурная схема волоконно-оптического гироскопа с изменением частоты

Рис.13, б.

На рис. 13, а представлена структура волоконно-оптического гироскопа с изменением частоты, разработанного западногерманской фирмой SEL, в нем два опорных генератора с частотой fL и fН, с помощью которых устанавливается разность фаз , которая коммутируется с частотой fс. Все это позволяет увеличить чувствительность. В частности, в стационарном режиме частота f возбуждения AOM1 равна (fL +fН)/2, т. е. при коммутации между fН и fL выходной сигнал интерферометра не изменяется. В режиме c. установившейся частотой f составляющая fc на выходе интерферометра отсутствует, что может быть основой для обратной связи для генератора, управляемого напряжением. При вращении гироскопа частота f отклоняется от значения (fL +fН)/2 и в соответствии с установившейся разностью можно определить по формуле  скорость этого вращения:  

         (11)

В  данной системе эффективно снижаются шумы, поскольку частота fс определяется как величина, обратная периоду распространения световой волны по катушке с оптическим волокном, а частота света сигнала и света обратного рассеяния Рэлея обычно различается только как fН - fL. Динамический диапазон, как видно на рис. 13, б, простирается на шесть порядков, что является особенностью метода изменения частоты.

Если расстояние от модуляторов АОМ1 и АОМ2 до расщепителя луча неодинаково, возникает дрейф нуля. Из-за этого стабильность нулевой точки ухудшается до стабильности в системе с фазовой модуляцией. Тем не менее, эти изделия уже выпускаются (с дрейфом около 3/ч). В них длина оптического волокна 1 км, радиус катушки 5 см. Угловое смещение на каждый отсчет частоты выходного сигнала составляет 2,95 с.

Метод изменения частоты структурно базируется на методе фазовой модуляции. Считается, что он позволяет повысить разрешающую способность и стабильность нулевой точки. При этом основные сложности связаны с частотным сдвигателем. Если в качестве его используется АОМ, то возникают две проблемы — увеличение габаритов оптической системы при росте мощности возбуждения и отраженного света, а также повышение частоты возбуждения. Наряду с АОМ исследуются частотные сдвигатели в виде волоконно-оптических фукциональных элементов и световых волноводов. Кроме того, интегрируются два AOM и объектив на подложке из LiNbО3. Проектируются также системы с частотным сдвигом, полученным на основе фазового метода.


На рис. 14 представлена общая структура фазовой системы, выполненной на базе интегральной схемы. Фазовый модулятор волноводного типа имеет хорошие частотные характеристики, поэтому возможно возбуждение пилообразным напряжением и реализация фазовой системы. При этом, если амплитуда пилообразного напряжения возбуждения строго соответствует 2
, то высшие гармоники не возникают, и получается идеальный частотный сдвигатель. Для инерциальной навигационной системы это условие должно выполняться очень строго. Французская фирма «Томсон ЦСФ» разработала автоматическую регулировку амплитуды с помощью цифроаналогового преобразователя, который обеспечивает требуемую пилообразную форму напряжения с фронтом из микроступеней. Частота его определяется как f из формулы (11), и при синхронной с цифроаналоговым преобразователем обратной связи здесь обеспечивается нулевой метод, а изменение тактовой частоты информирует об угловой скорости гироскопа. В этой системе не требуется большого сдвига частоты и можно обойтись лишь одним частотным сдвигателем. Разработан подобный гироскоп с дрейфом нуля 0,3/ч и динамическим диапазоном в 7 порядков.

Рис.14. Волоконно-оптический гироскоп с изменением частоты и сдвигатели фазового типа на интегральной схеме

Система со световым гетеродинированием

Система на рис. 6 включает в себя катушку радиусом 15 см из оптического одномодового волокна длиной 2000 м, отдельные оптические приборы и одномодовый полупроводниковый лазер. В ней используется прямая частотная модуляция излучения полупроводникового лазера, что приводит к дополнительным шумам. Для снижения когерентности увеличивается ширина спектра излучения. На рис. 15 приведены характеристики шумов. Расширение спектра позволяет повысить разрешающую способность примерно в 20 раз. Поскольку из-за обратного света спектр полупроводникового лазера нестабилен, в систему вводится изолятор.

Рис.15, а.  Обнаружение вращения волоконным гироскопом со световым гетеродинированием (рис.6, 7)

Рис.15, б. Обнаружение вращения волоконным гироскопом со световым гетеродинированием — характеристика передачи (рис.6, 7)

На рис. 15, а поясняется работа данной системы. По вертикальной оси откладывается изменение частоты, которое пропорционально угловой скорости, причем один отсчет соответствуег угловому сдвигу 4" (при 10-кратном усилении 0,4" на 1 отсчет). Скорость вращения земного шара 0,0042/с, кратковременная разрешающая способность 5/ч. На рис. 15, б приведена характеристика передачи (вход—выход). Скорость 11/ч соответствует фазовой разности 180. Линейность характеристики улучшена благодаря применению нулевого метода. Верхняя граница обнаружения вращения, определяемая электронной схемой, составляет 100/c, динамический диапазон экспериментальной системы 5 порядков.

Из-за тепловых колебаний скорости звука в АОМ системы возникает заметный дрейф нуля, в связи с чем продолжаются исследования способов отслеживания звуковой скорости в АОМ. Данную систему, используя двухмерные световые волноводы и дифракционные решетки, можно реализовать в виде интегральной схемы.

Рассмотрен принцип действия некоторых оптических гироскопов, в том числе волоконно-оптических. Благодаря методу фазовой модуляции достигнута разрешающая способность и стабильность нулевой точки в соответствии с требованиями инерциальной навигации. С помощью метода изменения частоты и светового гетеродинирования реализован широкий динамический диапазон (от пяти до девяти порядков) и стабильный масштабный коэффициент. Волоконно-оптические гироскопы находят широкое применение. Быстрыми темпами ведется разработка различных приборов на микрооптической технологии, волоконно-оптических функциональных элементах, оптических волноводных элементах. К настоящему времени такие гироскопы среднего класса уже имеются в продаже.

Волоконно-оптические гироскопы отличаются от прежних отсутствием механических систем, что делает их пригодными не только в навигации, но и в других областях, например, для контроля движения бура при бурении нефтяных скважин. Кроме того, если увеличить диаметр кольца из оптического волокна, удлинить интервал интегрирования выходного сигнала, то можно повысить чувствительность, что позволит использовать гироскоп для прогноза погоды, измерения флюктуаций собственного вращения Земли и др.

Список литературы

Волноводы оптической связи,  Теумин И.И.

Волоконно-оптические датчики, под ред. Т.Окоси, перевод с япон.

Оптические волноводы, Marcuse D., перевод с англ.

Основы волоконно-оптической связи, под ред. Е.М.Дианова, перевод с англ.

.

(7)

При равенстве интенсивностей интерферирующих волн видность максимальна и равна 1.

Период изменения интерференционных максимумов и минимумов интенсивности в плоскости, перпендикулярной биссектрисе угла  равен:

.

(8)

Чем меньше угол между падающими пучками, тем больше период интерференционной картины. Так, при  и  мкм период = 0,63 мкм, а при  = 109 мкм.

Пусть в области пересечения пучков движется малая в простейшем случае сферическая (радиуса r< ) частица со скоростью, характеризующейся вектором . Мощность рассеянного этой частицей излучения зависит от её местоположения, размера и оптических характеристик. Если частица находится в центре светлой интерференционной полосы, она рассеивает максимальную мощность, а если в центре тёмной полосы - минимальную. Особенности работы ЛДА с большими частицами (r ) рассмотрены в работе [2].

Мощность, рассеянную частицами, движущимися со скоростью U через измерительный объем, можно записать в следующем виде:

.

(9)

где , A(t) – медленно меняющаяся (по сравнению с 1/ω1,2) случайная компонента.

Коэффициент  обычно принимает значения от 1 до 10 -2 в зависимости от условий согласования амплитуд, фаз и состояния поляризации рассеянных волн в пределах приёмной апертуры, а также от величины отношения .

Из уравнения (6) видно, что усредненная по времени  рассеянная мощность меняется с частотой  равной:

,

(9.1)

и совпадающей с д.с.ч. в выражении (5). В случае  (частоты зондирующих пучков равны) регистрация д.с.ч, не даёт информации о знаке скорости (9.1).

Рассмотрим случай бегущей интерференционной картины . Если частица движется в ту же сторону, что и интерференционные полосы, то ; если частица движется навстречу полосам, то . Таким образом, ЛДА чувствителен не только к величине проекции скорости частицы на вектор чувствительности, но и к знаку проекции скорости.

7.3 Блок-схема ЛДА. Характеристика основных элементов

Рассмотрим в общем виде основные, функциональные блоки ЛДА, которые позволяют представить в целом работу измерителя скорости, его возможности и требования, предъявляемые к различным его элементам.

Рисунок 3 - Блок-схема дифференциального ЛДА с частотной модуляцией пучка. 1 – лазер, 2 – блок формирования зондирующих пучков, 3 – однополосный модулятор, 4 – линия задержки, 5 – блок передающей оптики, 6 – исследуемый объект, 7 – блок приемной оптики, 8 – блок выделения д.с.ч., 9 – устройство обработки сигнала.

Блок-схема ЛДА, построенного по дифференциальной схеме, изображена на рис. 3. Источннком когерентного излучения является лазер, как правило непрерывного действия, хотя в некоторых случаях возможно применение и импульсных лазеров. Излучение лазера в блоке (2) делится на два пучка, один из которых в знакочувствительных ЛДА пропускается через однополосный модулятор (3), сдвигающий частоту излучения на величину (которая потому и называется частотой модуляции). Для сдвига частоты часто используется акустооптический эффект. Один из пучков в некоторых измерителях проходит через линию задержки (4) для выравнивання длины оптического пути. Блок передаюшей оптики (5) направляет зондирующие пучки на исследуемый объект (6), содержащий движущиеся светорассеивающие частицы. Для транспортировки излучения к измерительному объекту часто используют оптические волноводы. Для увеличения светосилы метода рассеянный свет собирается приёмной оптикой (7) и направляется на блок выделения д.с.ч. (8). Выделенный сигнал, содержащий информацию о скорости движения частиц в области пересечения зондирующих пучков, обрабатывается в блоке 9.

Дадим краткую характеристику основных элементов ЛДА и рассмотрим требования, предъявляемые к ним.

1) Лазер. Основными параметрами, характеризующими лазер, как источник излучения в ЛДА, являются длина волны излучения , спектp излучения, тип колебаний и мощность. Выбор конкретного типа лазера обуславливается задачей, для которой предназначен ЛДА. Например, СО2 лазеры обладают большой мощностью (до нескольких десятков Вт в режиме непрерывноro излучения), длина волны излучения которых =10,6 мкм лежит в инфракрасной области спектра. Такое излучение сильно поглощается жидкостями, что исключает возможность их применения для исследования гидродинамических потоков. С другой стороны, большая мощность CO2 лазеров позволяет создавать ЛДА, которые предназначены для исследования воздушных потоков, содержащих аэрозоли, на расстояниях до нескольких километров.

Длина волны  определяет минимальный размер области пересечения зондирующих пучков, то есть величину измерительного объёма. Даже если пучки фокусируются и пересекаются в перетяжках, то поперечный размер перетяжки ограничен дифракционным пределом, который тем меньше, чем меньше . Большая локальность измерений особенно важна при решении таких задач, как исследования микроструктуры турбулентных потоков, измерение скорости течения в микрокапиллярах и т.п. Важным параметром лазерного излучения является его спектр, т.е. временная когерентность. Для получения хороших характеристик ЛДА, как по пространственному разрешению, так и по отношению сигнал/шум, излучение лазера должно иметь самый низкий поперечный тип колебаний ТЕМ00. При измерении малых скоростей лазеры могут работать на нескольких npoдольных типах колебаний, когда д.с.ч. меньше частотного игнтервала между этими типами колебаний. При измерении больших скоростей, как правило, нужны одночастотные лазеры.

Мощность лазеров определяет чувствительность установки. В случае большой концентрации рассеиваюших частиц, что характерно, например, для двухфазных потоков и твердых тел с шероховатыми nоверхностями, возможно применение лазеров небольшой мощности (около единиц мВт). Как правило, в этом случае используются получившие широкое распространение He-Ne или полупроводниковые лазеры. Если ЛДА применяется для исследования структуры потоков газа с малой концентрацией светорассеивающих частиц, то здесь необходимо использовать лазер большой мощности, например, аргоновый или СО2. В последнее время стали активно применяться твердотельные чип лазеры с полупроводниковой накачкой. Спектральные свойства излучения качество пучка и мощность излучения позволяют применять их в различных условиях.

2) Блок формирования зондирующих пучков может быть устроен по-разному. Исходный пучок можно разделить на два по амплитуде или по фронту. В первом случае, как правило, нспользуется делительный кубик, пластинка или полупрозрачное зеркало. Во втором случае используются призмы или маски той или иной формы.

3) В качестве однополосного модулятора, осуществляющего сдвиг частоты излучения в одном из двух зондирующих пучков (в знакочувствительных ЛДА), чаще всего используется акусто- или электрооптические преобразователи и вращающиеся дифракционные решётки.

4) Линия задержки предназначена для выравнивания длин оптических путей зондирующих пучков. Допустимая разность хода определяется длиной когерентности 1k используемого лазера. Для эффективного выделения д.с.ч. необходимо, чтобы разность хода была меньше lk. Так как , где Z - длина резонатора, а N - число одновременно генерируемых продольных мод, то в большинстве cистем ЛДА это выравнивание не представляет серьёзных проблем. Зачастyю линии задержки вообще отсутствуют.

5) Блок передающей оптики осуществляет сведение зондирующих пучков в область, где производятся измерения. В тех случаях, когда важна локальность измерения, пучки специально фокусируются. В простейшем случае этот блок представляет собой фокусирующую линзу или объектив. В некоторых случаях линза или объектпв ставится в каждый пучок, а сведение пучкoв в область измерения осуществляется поворотными зеркалами.

7) Блок приёмной оптики, как правило, представляет собой линзу или объектив, иногда с переменной апертурой. В случаях, когда д.с.ч. выделяется из света, расееянного назад (например, при измерении скорости движения оптически непрозрачного твёрдого тела), функции приёмной оптики может выполнять передающая линза. Задача блока приемной оптики состоит в том, чтобы собрать на фотоприемник рассеянное излучение из измерительного объема в возможно большем телесном угле.

8) Функции блока выделения д.с.ч. выполняют фотоприёмники (ФП): фотодиоды (ФД) или фотоумножители (ФЭУ), обладающие большой чувствительностью и хорошим быстродействием. При выборе конкретного типа ФЭУ или ФД принимают во внимание все его характеристики: коэффициент усиления, спектральную и частотную характеристики, темновой ток, пороговую чувствительность. Особенно тщательный выбор ФП делается при измерениях скорости движения слабо рассеивающих сред, когда регистрация рассеянного излучения ведётся в режиме счета фотонов. В дифференциальнык схемах ЛДА ФП осуществляет выделение д.с.ч. путём прямого фотодетектирования колебаний интенсивности рассеянного света,преобразуя их в колебания силы фототока. Частотно модулированный выходной ток ФП и является выходным сигналом ЛДА.

9) Устройство обработки сигнала преобразует информацию, содержашуюся в фототоке, в удобную для пользователя форму. При этом используются либо аналоговые, либо цифровые методы, либо их комбинация. Более подробно охарактеризуем эти методы после того, как рассмотрим свойства сигнала ЛДА.

7.4 Свойства сигнала ЛДА

Если часть света, рассеянногo некоторой частицей при пересечении ею интерференционного поля, попадает в блок приёмной оптики и далее на фотоприёмник, то на выходе фотоприёмника появляется импульс фототока, промодулированный частотой ωд (см. рис. 4).

Длительность импульса Т определяется временем нахождения частицы в измерительном объеме - области пересечения зондирующих пучков: Т=L/U , где L-размер этой области в направлении движения частицы (см. рис.2), U -скорость частицы. Глубина модуляции определяется видностью интерференционной картины (4). Очевидно, что энергетический спектр этот импульса (рис. 5) содержит низкочастатную составляющую, а также собственно доплеровскую составляющую, сдвинутую относительно нулевой частоты на  или  (в зависимости от направления скорости U частицы). Низкочастотная составляющая спектра обусловлена как постоянной составляющей сигнала с фотоприемника, так и фликкер-шумом источника излучения и фотоприемника. Ширина доплеровской составляющей спектра , а следовательно, и неопределённость в нахожденин частоты и проекции скорости тем больше, чем меньше измерительный объём, т.е. чем выше локальность измерения. Если интерференционное поле пересекает поток случайно расположенных частиц, как например, в случае рассеяния на вращающемся матовом диске, то сигнал на выходе фотоприёмника представляет собой суперпозицию радиоимпульсов, имеющих разную амплитуду, длительность и начальную фазу. Если учесть, что рассеивающие свойства частиц также могут силъно отличаться, то нетрудно представить себе, как выглядит реальный сигнал (см. рис. 6) и его выборочный спектр (см. рис. 7).

Рисунок 4 - Импульс фототока от одной частицы  

Рисунок 5 - Энергетический спектр импульса фототока от одной частицы

Рисунок 6 - Пример реализации реального сигнала ЛДА

  

Рисунок 7 - Выборочный спектр реального сигнала.

Для того чтобы из такого квазистохастического сигнала извлечь информацию о скорости движения исследуемогo объекта, разработаны различные методы его обработки. Самым простым из них является измерение несущей частоты сигнала с помощью частотомера. Спектральный анализ позволяет более точно выделить доплеровскую составляющую в энергетическом спектре сигнала с фотоприемника. Чтобы повысить точность этих измерений, обычно, предварительно пропускают сигнал через полосовой фильтр, отрезая низкочастотную компоненту с фликкер-шумом и высокочастотные шумы. Существуют и более сложные специальные методы, осуществляющие, например, аналоговую иди цифровую демодуляцию сигнала. В этом случае говорят о применении специализированных процессоров доплеровского сигнала.

Другой альтернативой является применение для обработки сигнала универсальной ЭВМ с ислользованием современных алгоритмов, например, быстрое преобразования Фурье (БПФ) и метода периодограмм. Использование ЭВМ существенно расширяет возможности проведения экспериментов с помощью ЛДА. Заметим, однако, что этот метод используется, как правило, лишь в случае измерения сравнительно невысоких скоростей.

ЛИТЕРАТУРА

1. Б.С. Ринкевичус, Лазерная анемометрия, М., «энергия», 1978

2. Ю.Д. Дубнищев, Б.С.Ринкевичус, Методы лазерной доплеровской анемометрии, М., «Наука»

3. F. Durst, A. Melling, J.H. Whitelaw Principles and practice of laser-doppler anemometry, Academic Press, 1976

Перспектива-создание лазерного анемометра на твердотельном лазере

Фаза световой волны

Одномодовое

1...100 рад×атм/м

Интерферометр Маха-Цендера

Сила электрического тока, напряженность магнитного поля

Магнитострикция

Фаза световой волны

Одномодовое

Чувствительность 10-9 А/м

Интерферометр Маха-Цендера

Сила электрического тока

Эффект Джоуля

Фаза световой волны

Одномодовое

Чувствительность 10 мкА

Интерферометр Маха-Цендера

Ускорение

Механическое сжатие и растяжение

Фаза световой волны

Одномодовое

1000 рад/g

Интерферометр Фабри-Перо

Гидроакустическое давление

Фотоупругость

Фаза световой волны (полиинтерференция)

Одномодовое

Интерферометр Фабри-Перо

Температура

Тепловое сжатие и расширение

Фаза световой волны (полиинтерференция)

Одномодовое

Высокая чувствительность

Интерферометр Фабри-Перо

Спектр излучения

Волновая фильтрация

Интенсивность пропускаемого света

Одномодовое

Высокая разрешающая способность

Интерферометр Майкельсона

Пульс, скорость потока крови

Эффект Доплера

Частота биений

Одномодовое, многомодовое

10-4...108 м/с

Интерферометр на основе мод с ортогональной поляризацией

Гидроакустическое давление

Фотоупругость

Фаза световой волны

С сохранением поляризации

Без опорного оптического волокна

Интерферометр на основе мод с ортогональной поляризацией

Напряженность магнитного поля

Магнитострикция

Фаза световой волны

С сохранением поляризации

Без опорного оптического волокна

Неинтерферометрическая

Гидроакустическое давление

Потери на микроизгибах волокна

Интенсивность пропускаемого света

Многомодовое

Чувствительность 100 мПа

Неинтерферометрическая

Сила электрического тока, напряженность магнитного поля

Эффект Фарадея

Угол поляризации

Одномодовое

Необходимо учитывать ортогональные моды

Неинтерферометрическая

Скорость потока

Колебания волокна

Соотношение интенсивности между двумя модами

Одномодовое, многомодовое

>0,3 м/с

Неинтерферометрическая

Доза радиоактивного излучения

Формирование центра окрашивания

Интенсивность пропускаемого света

Многомодовое

0,01...1,00 Мрад

Последовательного и параллельного типа

Распределение температуры и деформации

Обратное рассеяние Релея

Интенсивность обратного рассеяния Релея

Многомодовое

Разрешающая способность 1 м

Условия реализации волоконных датчиков связаны с наличием оптической комплектации:

- оптическое волокно в различных спектральных диапазонах. Волокно с сохранением поляризации излучения;

- источники оптического (в том числе и в ближнем инфракрасном диапазоне) излучения в диапазоне от 0,6 мкм до 2 мкм. Светодиоды и лазеры. Управление спектром излучения. DFB и DBR лазеры. Возможность модуляции. Ширина спектра излучения. Многомодовое излучение и перескоки с моды на моду. Расходимость излучения и согласование пучков излучения с многомодовым и одномодовым волокном. Система стыковки полупроводникового лазера с оптическим волокном. Температурные характеристики светодиодов и полупроводниковых лазеров. Надежность используемых излучателей. 100 000 часов непрерывной работы (более 10 лет). Оптическая изоляция лазерных источников излучения;

- приемники оптического излучения. Малогабаритность, малое энергопотребление. Высокая чувствительность. Время реакции. Pin фотодиоды, ЛФД фотодиоды. Методы обнаружения светового сигнала.

- стержневые линзы (граданы). Согласование с волокном;

- прямоугольные призмы, уголковая призма, поляризационный расщепитель, призма-поляризатор (Глан-Томпсон, Рошон);

- фазовая пластинка (лямбда/2 лямбда/4);

- оптические изоляторы 50 дБ и более, в коротковолновом (0,8 мкм длинноволновом 1,3 мкм и 1.5 мкм), парамагнитное стекло с добавками (Тербия Tr3+).

- Соединительные и разделительные фильтры (Многослойники, дифракционные решетки);

- модуляторы интенсивности (на основе электрооптического эффекта, ниобат лития, обладающий электрооптическими свойствами, которые зависят от температуры, (которая мешает)), (акустооптические модуляторы интенсивности);

- сдвиг оптической частоты (устройство на основе ультразвукового модулятора, перпендикулярное падение дифракция Рамана – Ната, дифракция Брега);

Волокно в качестве линии передачи

- изменение интенсивности от коэффициента отражения или прохождения (спектр поглощения полупроводников – датчик температуры, эффект пьезопоглощения –датчик давления, изменение спектра поглощения – газовый датчик)

Кроме поглощения Бугера - Ламберта в такой системе регистрируются вещества по отдельным линиям поглощения

Почему в естественных условиях не применяются широкополосные источники излучения? Линии поглощения от различных газов и веществ могут располагаться очень близко друг к другу, или просто перекрываться своими крыльями. В этом случае идентификация отдельных веществ или газов по линиям поглощения может быть затруднена.

Датчик паров воды один из самых востребованных, конкуренция громадная, но и спрос большой (два примера: кирпичный завод и самолетные датчики).

- люминесценция (термолюминесценция – датчик температуры), электролюминесценция (датчик электрического напряжения),

радиоактивная люминесценция (радиоактивный датчик);

- модуляция поляризованного излучения (эффект Фарадея – датчик электрического тока, магнитного поля),

Угол фарадеевского вращения  при напряженности магнитного поля и длине светового пути в веществе  определяется по формуле

Здесь  постоянная Верде, характеризует активность эффекта Фарадея для данного вещества.

В используемой системе анализатор обеспечивает зависимость интенсивности от угла поворота, что обеспечивает количественную оценку величины магнитного поля. Если установить угол между поляризатором и анализатором 45°, то регистрируемая световая мощность определяется по формуле

За какими параметрами надо следить! Стабильность интенсивности излучения и поляризации исходного излучения.

(эффект Поккельса – датчики электрического поля),

При распространении света по выбранному направлению происходит разделение на две моды с линейной поляризацией. В этих кристаллах коэффициент преломления для каждой моды изменяется пропорционально напряженности приложенного электрического поля.

(эффект фотоупругости – датчики давления, колебаний).

Под действием давления в фотоупругих материалах возникает двойное лучепреломление. Это значит входной линейно поляризованный на выходе имеет круговую поляризацию. Следовательно световая мощность измеряемая с помощью светового детектора определяется по формуле

Где  измеряемое давление , так называемое полуволновое давление

Параметр С - постоянная фотоупругости и определяется через коэффициенты преломления, оптическую деформацию и упругость.

- модуляция частоты (эффект Доплера –датчики скорости, вибрации). Используя доплеровский частотный сдвиг можно создать датчик микроскорости.

Волокно в качестве чувствительного элемента

(работа для сельского хозяйства)

Под волоконно-оптическим измерением температуры (английский вариант DTS = Distributed Temperature Sensing) понимают применение оптоэлектронных приборов для измерения температуры, при которой стеклянные волокна используются в качестве линейных датчиков. Типичными случаями применения линейных волоконных температурных датчиков являются сферы, связанные с безопасностью, например, системы пожарного оповещения в автомобильных, железнодорожных или сервисных туннелях; термический контроль силовых кабелей и воздушных линий передач для оптимизации производственных отношений; повышение эффективности нефтяных и газовых скважин; обеспечение безопасного рабочего состояния промышленных индукционных плавильных печей; контроль герметичности контейнеров с сжиженным природным газом на судах в разгрузочных терминалах; обнаружение утечек на плотинах и запрудах; контроль температуры при химических процессах; обнаружение утечек в трубопроводах.

Физические воздействия на оптоволокно, такие как: температура, давление, сила натяжения - локально изменяют характеристики пропускания света и как следствие, приводят к изменению характеристик сигнала обратного отражения. В основе измерительных систем на основе оптоволоконных датчиков используется сравнение спектров и интенсивностей исходного лазерного излучения и излучения, рассеянного в обратном направлении, после прохождения по оптоволокну.

Обратное световое рассеяние при температурном воздействии

Оптические волокна изготовлены из легированного кварцевого стекла. Кварцевое стекло представляет собой разновидность двуокиси кремния (SiO2) с аморфной твердотельной структурой. Температурные воздействия инициируют вибрации в молекулярной решетке. Когда свет попадает на термически возбужденные молекулы, происходит взаимодействие между световыми частицами (фотонами) и электронами. Таким образом, в оптическом волокне происходит световое рассеяние, так же известное, как рамановское рассеяние.

Обратное световое рассеяние состоит из нескольких спектральных составляющих:

• Рэлеевское рассеяние, с длиной волны аналогичной, используемой в лазерном источнике;

• Стоксовы компоненты Рамановского рассеяния с длиной волны большей, чем у используемого лазерного источника, при которых испускаются фотоны;

• Антистоксовы компоненты Рамановского рассеяния с меньшей длиной волны, по сравнению с рэлеевским рассеянием, при которых фотоны поглощаются.

Интенсивность рассеяния, так называемого антистоксова диапазона, зависит от температуры, в то время как, стоксова компонента от температуры практически не зависит. Локальная температура оптического волокна выводится из отношения антистоксовой и стоксовой интенсивностей света. Бриллюэновские линии, которые более интенсивны, чем Стоксовы, но имеют меньший спектральный сдвиг. Этот спектральный сдвиг вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на волокно. Воздействие механических напряжений и температур приводит к изменению положения Бриллюэновской линии на шкале длин волн.

Датчики температуры на основе Рамановских линий

Самым современным оборудованием в системе мониторинга распределения температуры, например в трубопроводах, является распределенный оптоволоконный датчик температуры на основе Рамановских линий. Принципом работы датчика является то, что интенсивность Стоксовой Рамановской компоненты рассеянного излучения практически не зависит от температуры, а интенсивность Антистоксовой линии сильно связана с температурой. Это позволяет, определяя отношение интенсивности Антистоксовой линии и Стоксовой линии, определять значение температуры. Данный подход позволяет избавиться от погрешности, связанной с возможными флуктуациями мощности зондирующего лазерного импульса. Системы этого типа могут работать на расстояниях в несколько километров. Пространственное разрешение может достигать 0,5 м.

Самым известным методом основанным на эффекте обратного рассеивания является метод OTDR (= Optical Time Domain Reflectometry или оптическая рефлектометрия во временной области). В его основе заложен импульсно-акустический метод (импульсы и эхо), в результате разницы времени распространения между временем передачи и обнаружения световых импульсов можно определить уровень и место рассеивания.   Поэтому локально распределенный датчик температуры Рамана с техникой OTDR может быть реализован только с помощью мощных (дорогих) импульсных лазеров (обычно лазеров с твердым рабочим веществом) и быстрой, также дорогостоящей, техникой передачи сигналов. Разработанный компанией «LIOS Technology GmbH» температурный датчик Рамана OFDR (OFDR, Optical Frequency Domain Reflectometry = рефлектометрия частотной области) работает не во временном диапазоне, как техника OTDR, а в частотном. При методе OFDR получают информацию о локальном изменении температуры, если сигнал обратного рассеивания, обнаруженный на протяжении всего времени измерения, измеряется как функция частоты и в комплексе (комплексная передаточная функция), а затем подвергается преобразованию Фурье. Существенными преимуществами техники OFDR являются режим квазинепрерывного излучения лазера и узкополосное обнаружение оптического сигнала обратного рассеивания, вследствие чего, достигается значительно более высокое отношение сигнал / шум, чем при использовании импульсной техники. Данное техническое преимущество позволяет использовать недорогие полупроводниковые лазерные диоды и недорогостоящие электронные блоки для передачи сигналов. Им противопоставляется технически сложное измерение комбинационного рассеиваемого света (комплексное измерение в соответствии с величиной и фазой) и высокая затратная часть из-за БПФ (блока преобразования Фурье), необходимого для обработки сигнала и с более высокими требованиями к линейности электронных блоков и компонентов.

Схематическая структура волоконно-оптической системы измерения температуры состоит из блока формирования сигнала с частотным генератором, лазера, оптического модуля, приемного блока и блока микропроцессора, а также световодного кабеля (кварцевое стеклянное волокно) в качестве линейного температурного датчика. В соответствии с методом OFDR интенсивность лазера в течение интервала времени измерения модулируются синусообразно, а частота — в виде линейной частотной модуляции. Отклонение частоты является прямой причиной для локального срабатывания рефлектометра. Частотно-модулированный свет лазера направляется в световод. В любой точке вдоль волокна возникает комбинационный рассеянный свет, излучаемый во всех направлениях. Часть комбинационного рассеянного света движется в обратном направлении к блоку формирования сигнала. Затем выполняется спектральная фильтрация света обратного рассеивания, его преобразование в измерительных каналах в электрические сигналы, усиление и электронная обработка. Микропроцессор проводит расчет преобразования Фурье. В качестве промежуточного результата получают кривые комбинационного обратного рассеивания как функцию длины кабеля. Амплитуда кривых обратного рассеивания пропорциональна интенсивности соответствующего комбинационного рассеивания. Из отношения кривых обратного рассеивания получают температуру волокна вдоль световодного кабеля. Технические спецификации системы измерения температуры Рамана могут быть оптимизированы посредством настройки параметров прибора (дальность действия, локальное разрешение, точность температуры, время измерения). Возможна также регулировка световодного кабеля в соответствии с возможностями конкретного случая применения. Термическая стойкость стекловолоконного покрытия ограничивает максимальный диапазон температуры световодного кабеля. Стандартные волокна для передачи данных располагают акриловым покрытием или покрытием, затвердевшим в результате УФ (ультрафиолетового) излучения, и пригодны для диапазона температур до 80 °C. Стекловолокно с полиамидным покрытием может использоваться до максимальной температуры 400 °C.

Бриллюэновские системы Как отмечено ранее, спектральный сдвиг Бриллюэновской линии вызван акустическими колебаниями кристаллической решетки волокна и несет в себе информацию о механических напряжениях и температурах, воздействующих на оптоволокно. Созданные к настоящему времени алгоритмы обработки сигналов таких систем позволяют разделить информацию о температуре и о механических воздействиях. Для Бриллюэновской системы мониторинга типичны следующие характеристики: расстояние, на которое может работать единичная система – 40 – 50 км при пространственном разрешении 1 – 2 метра. К недостаткам Бриллюэновских систем мониторинга следует отнести сложность их устройства, которая обуславливает высокую стоимость. Преимуществом Бриллюэновских систем является возможность работы с сенсорными кабелями на основе обычного дешевого связного волокна. Время получения сигнала с таких систем составляет ориентировочно 1 – 2 минуты. При работе с более длинными линиями время измерений возрастает. Для повышения чувствительности и значительного сокращения времени измерений используется метод, основанный на стимулированном Бриллюэновском рассеянии. Он отличается от систем на спонтанном рассеянии тем, что в волокно направляются одновременно непрерывное «пробное» лазерное излучение и мощный импульс накачки Системы мониторинга на основе стимулированного Бриллюэновского рассеяния обеспечивают работу на расстояние порядка 50 км (возможны большие расстояния) с пространственным разрешением от 0,5 м. Минимальная частота получения измерительной информации может составлять значения порядка одного Герца.

Датчики на основе интерференции

Волоконно-оптические интерферометры:

Кольцевой

Кольцевой Фабри-Перо

Маха – Цендера

Майкельсона

Автомобиль, как грузовой, так и легковой представляем в качестве самодиагностируемой системы, в которой все параметры должны контролироваться перманентно.

Требуется контроль:

- уровня масла

- Уровень бензина

- напряжение на аккамуляторе

- ток разряда акамулятора через стартер

- наличие СО в выхлопных газах

- индикаторы закрытия дверей


 

А также другие работы, которые могут Вас заинтересовать

28913. Радикальная социально-экономическая модернизация 43.5 KB
  Конкурентный рынок мог утвердиться только на базе частной собственности поэтому необходимо было приватизировать передать в частную собственность значительную часть предприятий ограничить роль государства как хозяйствующего субъекта. Следующим этапом реформ стала приватизация государственных предприятий. Согласно ей было проведено акционирование государственных предприятий 51 акций распределялись между работниками предприятий а остальные поступали в открытую продажу: каждому россиянину выдавался приватизационный чек ваучер стоимостью...
28914. Основные направления внешней политики России в новой геополитической ситуации (1991–2002 гг.) 43.5 KB
  Провозглашалась невозможность решения международных проблем силовыми методами. Универсальным способом решения международных вопросов объявлялся баланс интересов приоритет общечеловеческих ценностей над классовыми. Конструктивное решение международных проблем возможно только путем мирных переговоров путем учета законных национальных интересов всех стран мира. В этих условиях неимоверно возрастает роль ООН в решении международных проблем.
28915. Февральская революция 1917 г. и свержение самодержавия 38.5 KB
  Специфика исторического процесса в России спрессовала во времени и пространстве фундаментальные проблемы общественного преобразования разных эпох. Особую остроту и зрелость революционной ситуации в России к началу 1917 г. Заявив что судьбу политического строя в России должно решать Учредительное собрание. Самодержавие в России окончательно пало.
28916. Россия от февраля до октября 1917 г. Альтернативы развития страны 43.5 KB
  В ходе февральской революции в России сложилось двоевластие: временное правительство – орган диктатуры буржуазии и помещиков; советы рабочих солдатских депутатов – орган власти трудящихся. Возникает вторая альтернатива: установление жесткой диктаторской власти опирающейся на военщину. В конце августаначале сентября Петроградский и Московский Советы приняли резолюцию о взятии всей полноты власти. В ответ была предпринята попытка усиления центральной власти.
28917. Гражданская война в России (1918-1920 гг.) 42.5 KB
  Гражданская война в России 19181920 гг. €œСоюз защиты Родины и свободы€ под руководством эсера Савинкова €œСоюз освобождения России€ объединивший кадетов меньшевиков эсеров. На юге России и Северном Кавказе – генералы Алексеев и Корнилов начали формировать Добровольческую армию ставшую основой белого движения. Страны Антанты подписали соглашение о непризнании Брестского мира и будущем разделе России на сферы влияния.
28918. Формирование однопартийного политического режима (1917-1940 гг.) 39.5 KB
  Это привело к подчинению государственных структур партии. Этот процесс шел параллельно с тенденцией превращения диктатуры пролетариата в диктатуру партии. В условиях однопартийной системы Советы превратились в придаток партии. Советы же оказываются лишь рычагом в руках партии для управления государством.
28919. Социально-экономическая политика советского государства (1921-1941 гг.) 41.5 KB
  Речь шла о необходимости превращения СССР из страны ввозящий машины и оборудование в страну производящую их. На рубеже 2030 годов руководство страны приняло курс на форсирование индустриального развития. Руководство страны решило выдвинуть лозунг – догнать и перегнать в кратчайшие сроки в техникоэкономическом отношении передовые капиталистические страны. За ним стояло желание в кратчайшие сроки любой ценой ликвидировать отсталость страны и построить новое общество.
28920. НАЦИОНАЛЬНАЯ ПОЛИТИКА СОВЕТСКОГО ГОСУДАРСТВА. ОБРАЗОВАНИЕ СССР 23 KB
  ОБРАЗОВАНИЕ СССР После Октябрьской революции и победы большевиков одним из первых декретов новой власти стала Декларация прав народов России провозглашавшая равенство и суверенность всех народов их право на самоопределение вплоть до отделения и образования самостоятельных государств свободное развитие всех национальных меньшинств. После Гражданской войны начался процесс объединительного движения которое привело к образованию новой российской государственности – СССР. съезд полномочных представителей данных республик I съезд Советов Союза...
28921. Культурное строительство в СССР (1921-1941 гг.) 40.5 KB
  Советский период это сложное и противоречивое явление в развитии не только нашей истории но и культуры. Отличительной особенностью советского периода истории культуры является огромная роль в ее развитии партии и государства. Государство взяло на себя финансирование всех отраслей культуры: образование материальнотехническое обеспечение все виды искусства установив строжайшую цензуру над литературой театром кинематографом учебными заведениями и т. В спецхранилищах оказались произведения писателей художников и других представителей...