21663

Гидрология озер

Лекция

География, геология и геодезия

Гидрология озер Происхождение типы и морфология озерных котловин Озерами называются котловины или впадины земной поверхности заполненные водой и не имеющие прямого соединения с морем. Согласно приведенному определению к озерам могут быть отнесены и такие крупные водоемы как Каспийское и Аральское моря а также сравнительно небольшие временные скопления воды в понижениях местности образующиеся например в период весеннего снеготаяния. Иногда в отличие от текущих вод рек озера определяют как водоемы с замедленным стоком или с...

Русский

2013-08-03

174 KB

60 чел.

Тема 7. Гидрология озер

Происхождение, типы и морфология озерных котловин

Озерами называются котловины или впадины земной поверхности, заполненные водой и не имеющие прямого соединения с морем.

Размеры озер колеблются в весьма широком диапазоне. Согласно приведенному определению, к озерам могут быть отнесены и такие крупные водоемы, как Каспийское и Аральское моря, а также сравнительно небольшие временные скопления воды в понижениях местности, образующиеся, например, в период весеннего снеготаяния.

Иногда, в отличие от текущих вод (рек), озера определяют как водоемы с замедленным стоком или с замедленным водообменом.

При наличии котловины образование озера произойдет в том случае, когда приток воды в это углубление будет превышать потери на фильтрацию и испарение.

Водохранилище - искусственно созданное озеро.

Пруд - водохранилище небольшого размера.

Пруд - естественные озера, на площади которых распространена водная растительность.

Типы озер по характеру котловин. Несмотря на большое разнообразие встречающихся в природе озер, среди них могут быть выделены определенные типы, имеющие сходство по ряду признаков.

Прежде всего можно выделить определенные типы озер в зависимости от условий образования озерного ложа.

По характеру котловин, послуживших основой для образования озера, можно выделить:

1. Плотинные озера - образуются в том случае, когда долина перекрывается в каком-либо месте обвалом, ледником, наносамии т. п.; в эту группу входят и искусственные озера — водохранилища.

Среди плотинных озер можно выделить

- речные - могут возникать как временные образования в результате резкого снижения стока отдельных рек в сухое время года; в этом случае реки нередко обращаются в цепочку озер, лежащих в долине и отделенных друг от друга сухими участками русла.

- пойменные - непосредственно связаны с процессом образования стариц, возникающих вследствие преграждения отдельных рукавов реки грядой наносов и образования рекой нового русла.

- долинные - возникают в горах от завалов. Озера завального происхождения образуются вследствие закупорки узкой долины продуктами разрушения их склонов.

- прибрежные озера бывают двух типов: лагуны и лиманы.

Лагуны возникают в том случае, когда мелководные заливы, или бухты, отделяются от моря наносными песчано-глинистыми валами, или косами.

Лиманы представляют собой затопленную морем устьевую часть долины.

2. Моренные озера обязаны своим происхождением деятельности ледников, особенно мощных ледниковых покровов четвертичного периода, которые погребали под собой огромные пространства. После отступления (таяния) и исчезновения такого ледникового щита на его месте остался обломочный материал, который переносил с собой ледник: глина, песок, щебень, крупные глыбы горных пород и т. д.

Большое скопление этого материала (морены) в одних местах и незначительное в других создает рельеф, отличающийся холмистостью, непрерывным и частым чередованием возвышенностей и понижений, причем понижения обычно бывают замкнутыми. Заполненные водой, они образуют моренные озера круглой или неправильной формы, со многими ответвлениями и заливами. В условиях моренного ландшафта немало озер, относящихся и к типу плотинных.

3. Каровые озера занимают впадины, выработанные в ледниковое время совместной работой льда, фирна и морозного выветривания.

4. Карстовые озера представляют собой результат химической (растворяющей) деятельности подземных и поверхностных вод. Вынос растворенных веществ, а также тонких глинистых частиц (суффозия) может привести к образованию подземных пустот и оседанию кровли над этими пустотами, что обусловит появление воронок на поверхности земли; если эти воронки будут заполнены водой, на их месте возникнут карстовые озера.

Своеобразной разновидностью карстового типа озер являются термокарстовые озера, возникающие в результате заполнения водой углублений на поверхности земли, образующихся в областях развития вечной мерзлоты вследствие таяния подземных пластов или линз льда. Таяние этого льда не только способствует образованию озерной котловины, но и в значительной мере поставляет воду для заполнения котловины.

5. Дефляционные озера располагаются в котловинах, созданных в результате процесса выдувания, и в понижениях между барханами и дюнами.

Многие котловинные озера возникают в результате вулканических и тектонических процессов.

6. Тектонические озера. Тектонические процессы обусловливают появление котловин огромных размеров. Поэтому тектонические озера обычно глубоки. Примерами могут служить озера Иссык-Куль, Байкал, Севан и др.

7. Вулканические озера возникают либо в кратере потухшего вулкана, либо в углублениях на поверхности лавового потока, образовавшихся при его застывании, либо в долине реки вследствие перегораживания ее потоком лавы.

По водному балансу озёра делятся на:

- сточные - имеют сток, преимущественно в виде реки);

- бессточные - не имеют поверхностного стока или подземного отвода воды в соседние водосборы. Расход воды происходит за счет испарения.

По химическому составу воды озёра делятся на:

- пресные

- минеральные (солёные)

Элементы озерного ложа и береговой области. Впадина, находящаяся на земле и наполненная водой, имеет закономерно построенный рельеф, отличающий ее от впадин, не занятых водой.

Первоначальная форма котловин изменяется под действием размыва как поверхностным стоком в озеро, так и волнением: склоны котловины выполаживаются, неровности рельефа дна сглаживаются, заполняясь отложениями, откосы берега приобретают устойчивый профиль.

Раздел озероведения, в котором рассматриваются закономерности, проявляющиеся в формировании рельефа озерных котловин, называется морфологией озер.

Озерная котловина от окружающей местности отграничена коренным берегом, образующим береговой склон, или яр; основание этого берега располагается на верхней границе воздействия озерной волны.

Заканчивается коренной берег бровкой, или линией сопряжения склонов с поверхностью прилегающей местности.

Часть котловины, заполненная водой до высоты максимального подъема уровня, называется озерным ложем, или озерной чашей.

В озерной котловине прежде всего можно выделить береговую и глубинные области.

В береговой области выделяют три зоны:

1) береговые склоны (яр)— часть озерного склона, окружающая озеро со всех сторон и неподвергающаяся воздействию волнового прибоя;

2) побережьевключает сухую часть, которая подвергается воздействию воды лишь при сильном волнении и в особенности при высоком стоянии воды, затопляемую, которая покрывается водой периодически — во время подъема уровня воды озера, и подводную, которая обычно лежит под поверхностью воды и, в отличие от более глубоких частей береговой области, подвергается воздействию волны при волнении;

3) береговую отмельзаканчивается подводным откосом, являющимся границей между склоном и дном озерного ложа; верхняя часть береговой отмели соответствует нижней границе воздействия на береговую область волнового прибоя.

Указанные зоны береговой области озерной котловины в схематическом виде показаны на рис. 1.

Рис. 1. Схема расчленения береговой области озерной котловины

Побережье и береговую отмель объединяют в одну зону – прибрежную или литораль. Ее нижняя граница определяется глубиной действия волны, иногда глубиной проникновения солнечных лучей. Глубинная часть озера – профундаль. Между литоралью и профундалью – сублитораль.

Формирование озерного ложа под влиянием волнения и отложения наносов. Волнение, зависящее от силы ветра, глубины и размеров озера, воздействует в течение длительного периода на береговую область озерной котловины, разрушает слагающие ее горные породы и сносит размытый материал вниз по склонам и на дно озера. В результате этого увеличиваются размеры побережья и отмели размыва, одновременно с этим увеличивается площадь намыва и уменьшается за счет глубинной области озера.

Таким образом, озеро постепенно заносится благодаря действию волн. Степень интенсивности этого процесса, конечно, в значительной мере зависит от геологического состава пород, из которых сложен берег озера.

Однако каков бы ни был береговой материал, он под действием волн и выветривания превращается, в конце концов, в мелкий камень, гравий и песок.

Кроме волнения, на форму озерного ложа существенное влияние оказывает процесс поступления аллювиальных наносов, приносимых впадающими в озеро реками. Впадающие в озеро поверхностные водотоки размывают по пути своего следования грунты и выносят продукты размыва в озеро.

Помимо минеральных осадков, попадающих в озерное ложе в результате волнения или приносимых течением рек, озерная котловина заполняется и отложениями ила органического происхождения. Этот ил является продуктом процессов, происходящих в самом озере, и образуется в результате отмирания и последующего осаждения на дно взвешенных в воде микроскопических животных и растительных организмов (так называемого планктона), а также в результате отмирания прибрежной растительности, распадающейся после перегнивания на мельчайшие частицы, легко уносимые течениями на середину озера. Интенсивное развитие указанных организмов в течение теплого периода года, а отмирание в течение холодного обусловливает послойное отложение этих илов на дне озера, что позволяет по слоям определять возраст озера.

Зарастание озер. Количество минеральных осадков и органического ила на дне озера увеличивается с каждым годом, вследствие чего дно постепенно повышается.

В озерах с пологими берегами водно-болотные растения надвигаются на озеро с берегов, окаймляя зеркало воды широким зеленым кольцом.

Для мелководных озер с пологими берегами можно выделить ряд поясов, закономерно сменяющихся от берегов к центру озера (рис. 2).

Рис. 2. Схема зарастания мелководных озер.

1 — осоковый торф, 2 — тростниковый и камышовый торф, 3 — сапропелевый торф, 4 — сапропелит.

Иногда на мелеющих озерах можно наблюдать сплавиныостровки растительности, оторванные от берегов или непосредственно примыкающие к минеральному берегу (Рис. 3). Сначала эти сплавины образуют небольшие площади, затем по мере дальнейшего обмеления озера они разрастаются, соединяются с другими и покрывают озеро сплошным покровом болотной растительности из травяного и мохового ярусов. Эти образования известны под названием зыбуна.

Рис.  3. Схема зарастания глубокого озера путем образования сплавин.

1 — торф сплавины; 2 — мутта, или пелоген; 3 — сапропелевый торф; 4 — сапропелит.

Географическое положение озера. Морфометрические характеристики. Важной характеристикой озера является его географическое положение (широта, долгота) и высота над уровнем моря.

Эти данные уже позволяют составить общее представление об основных чертах режима озера. Географическое положение озера в определенной мере отражает общие климатические особенности района, а высотное положение определяет также местные влияния климатических и других факторов на процессы, происходящие в озере.

При изучении озер и озерных котловин важно установить не только условия их образования, но и определить ряд числовых характеристик, дающих количественные представления об основных элементах озера и озерной котловины. Эти характеристики носят название морфометрических.

Площадь озера ω, м2, вычисляется двояко: либо вместе с площадью островов, либо отдельно площадь водной поверхности. Так как берега озер не отвесны, площадь водной поверхности (зеркала озера) изменяется при изменении уровня озера.

Длина озера - L, м - кратчайшее расстояние между двумя наиболее удаленными точками, расположенными на берегах озера, измеряемое по поверхности озера.

Таким образом, эта линия будет прямой лишь в случае сравнительно простых очертаний озера; для извилистого озера эта линия, очевидно, может быть и не прямой, а состоять из отдельных отрезков прямых и кривых линий.

Ширина озера  различают:

- наибольшую ширину - В, м, определяемую как наибольший поперечник (перпендикуляр) к линии длины озера,

- среднюю ширину – Вср, м, представляющую отношение площади ω озера к его длине L

Коэффициентом извилистости т - степень развития береговой линии - отношение длины береговой линии s к длине окружности круга, имеющего площадь, равную площади озера,

Коэффициент извилистости береговой линии может также быть выражен отношением длины береговой линии S к периметру ломаной линии S', обводящей контур озера:

                  m = S/S'

В этом случае получается более правильное представление об изрезанности береговой линии.

Широкое применение при оценке водных запасов озера имеет кривая изменения площади озера с глубиной, представляющая собой график связи площадей горизонтальных сечений озера и соответствующих им глубин, и кривая изменения объема озера в зависимости от его глубины.

Рис. 4. Кривые площадей и объемов Онежского озера

На Рис. 4 представлены кривые изменения площади и объема Онежского озера с глубиной. Такие кривые дают возможность определить площадь зеркала озера и объема воды для любого уровня. Эти величины необходимо знать при всех расчетах.

Объем воды в озере W, м3 может быть определен   по карте  изобат, пользуясь «методом призм». Изобатные поверхности делят объем озера на ряд слоев, каждый из которых можно рассматривать приближенно как призму, основаниями  которой будут площади, ограниченные смежными изобатами, а высота равна сечению между ними. Обозначив площади, ограниченные отдельными изобатами, через ω0,  ω1, ω2,  ω3… ωn, а сечение их через h, объем воды в озере определим по формуле

W =  +++…++ W =

= W,

где W – объем, заключенный между площадью последней самой глубокой изобаты и точкой дна озера с максимальной глубиной, определяемый по формуле:

W= ,

где hмакс – максимальная глубина озера в метрах; hn – глубина, соответствующая наибольшей изобате, ωnплощадь последней (самой глубокой) изобаты.

Максимальная глубина озера – hмакс, м.

Средняя глубина озера - hср, м - отношение объема воды в озере к площади его зеркала.

Средний уклон дна между изобатами определяется по формуле:

где l1, l2 – длины изобат, между которыми определяется уклон; h – сечение изобат, ω – площадь кольца между изобатами.

Средний уклон озера I определяется по формуле:

где n – число изобат.

Знание элементов, характеризующих форму озерной котловины, необходимо не только для того, чтобы понять основные закономерности режима озера, но и для решения ряда хозяйственных задач, связанных непосредственно с эксплуатацией озера. Например, при использовании озера в транспортных целях необходимо знать распределение глубин в пределах всей акватории и, в частности, в зоне береговой отмели. При регулировании стока вытекающих из озера рек необходимо иметь кривые зависимости объема воды и площадей озера от высоты стояния уровня. Для расчета элементов волн важно знать распределение глубин и ширин озера по различным направлениям и т. д.

Уровенный режим озер.

Уровенный режим озер определяется комплексом следующих природных условий:

а) соотношением между приходной (осадки на зеркало озера, поверхностный приток, подземный приток) и расходной частью водного баланса озера (испарение, поверхностный и подземный сток из озера);

б) морфометрическими характеристиками озерной чаши и озерной котловины (соотношение между высотой стояния воды в озере и площадью его водного зеркала);

в) размерами озера, его формой, характером берегов, характером ветровой деятельности, определяющим размеры волн, сгонов и нагонов уровня.

Колебания уровня озера могут быть сведены к следующим трем основным видам: сезонные, годовые и кратковременные.

Иногда колебания уровня в годовом (сезонные) и многолетнем периоде, отражающие режим притока и убыли воды в озере, называют абсолютными колебаниями, а кратковременные, которые происходят одновременно с абсолютными изменениями уровня, называют относительными колебаниями. В силу того что относительные колебания протекают одновременно с абсолютными, они дополнительно увеличивают или уменьшают амплитуду абсолютного колебания уровня озера в отдельных его пунктах.

Сезонные колебания, происходящие в течение года, обусловливаются различными в разные месяцы, но более или менее правильно ежегодно повторяющимися соотношениями между приходной и расходной частями водного баланса.

Амплитуда годовых колебаний уровня воды в разных озерах различна и зависит oт ряда факторов: климатических условий, характера питания, размера площади водосбора, размера озера, геологических условий озерного ложа и др.

Абсолютные значения амплитуды колебания уровней естественных озер изменяются в довольно широких пределах — от десятков сантиметров до 2—4 м и больше в зависимости от сочетания указанных выше условий.

После ряда многоводных лет, когда приток превышает расход воды из озера, имеет место более высокое стояние уровней, чем после маловодных периодов. Вследствие того что на крупных (особенно бессточных) озерах уровень каждого данного года является следствием характера водности ряда предшествующих лет, низкий уровень может иметь место и в многоводном году, если этот год входит в цикл лет маловодного периода, и высокий — в маловодном, если этот маловодный год наблюдается в пределах многоводного периода.

Кроме отмеченной причины, имеющей место на каждом озере, иногда наблюдаются так называемые вековые колебания, вызываемые геологическими факторами (поднятие, опускание озерной котловины и отдельных частей ее).

Кратковременные, или относительные, колебания уровней воды в озере являются следствием волнения, ветровых нагонов и сгонов и сейш.

Динамические явления в озерах

Постоянные и временные движения водных масс. Движения водной массы, возникающие в озерах, могут быть разделены на постоянные и временные.

Постоянные движения воды в озере в форме течений вызываются впадающей в озеро или вытекающей из него рекой (сточные течения). Интенсивность таких течений определяется соотношением объема озера и расхода втекающей или вытекающей реки. Если объем воды в проточном озере невелик по сравнению с объемом воды, втекающей в озеро, то в озере устанавливается течение, аналогичное течению в реке, лишь с соответственно меньшими скоростями. Такое проточное озеро может в некотором смысле рассматриваться как крайний случай значительного расширения русла реки.

Если, наоборот, объем озера весьма велик по сравнению с объемом воды, втекающей и вытекающей из него, то, хотя оно и в этом случае называется проточным, но во многих отношениях по характеру происходящих в нем процессов ближе подходит к бессточному озеру. Течение такого типа наблюдается в оз. Байкал, объем которого чрезвычайно велик по сравнению с объемом стока втекающих в него рек Селенги, Верхней Ангары и др. и вытекающей из него р. Ангары.

Временные движения водной массы озера могут проявляться в виде течений и волнения.

Среди временных течений прежде всего следует выделить такие, которые возникают под действием ветра и вследствие неравномерного нагревания и охлаждения воды озера.

Ветровые (дрейфовые) течения оказывают особенно значительное влияние на характер физических процессов в озерах с большой площадью, плоской формой озерного ложа и малыми глубинами.

Неравномерность охлаждения и нагревания водных масс озера прежде всего вызывает вертикальные, так называемые конвекционные токи, в некоторой степени оказывающие влияние и на горизонтальные перемещения водных масс.

Среди временных движений водных масс озера наибольшее значение имеют ветровые волны и сейши.

Ветровые волны. Исследования показали; что если две среды разной плотности расположены одна над другой, но только в состоянии покоя одной среды относительно другой разделяющая их поверхность будет плоскостью. Если одна из них движется по отношению к другой, то разделяющая их поверхность принимает волнообразный характер, причем размеры волн зависят от скорости движения, разности плотностей и глубин обеих сред.

При движении воздуха над водной поверхностью в результате трения создается неустойчивое равновесие на поверхности их раздела, которое, неизбежно, нарушаясь, закономерно переходит в устойчивую в этих условиях волновую форму с повышением плоскости раздела против начальной линии уровня в одних местах и с понижением в других.

Волны характеризуются  следующими   элементами (Рис. 5):

вершина, или гребень, волны — высшая точка волны А;

подошва, или ложбинасамая низшая точка волны В;высота волны — разность отметок гребня и подошвы;

длина — расстояние между двумя вершинами или двумя подошвами;

крутизна волны (а) в данной точке — тангенс угла, составляемого касательной к профилю волны с горизонтальной линией. Часто в расчетных зависимостях под крутизной волны понимают не крутизну в данной точке, а отношение длины волны к высоте волны;

период волны — промежуток времени, в течение которого волна пробегает расстояние,_равное ее длине;

скорость распространения волны — расстояние,   проходимое какой-либо точкой волны (например, гребнем) в единицу времени.

По внешней форме различают:

а) правильное – двухмерное - волнение, когда наблюдается одна система волн, распространяющихся в одном направлении и имеющих одну форму и размеры;

б) неправильное – трехмерное - волнение, состоящее из беспорядочно движущихся волн, гребни и ложбины которых разбиты на обособленные бугры и впадины.

                

              

                                Рис. 5. Схема ветровой волны

 

Применительно к случаю правильных двухмерных волн существует теория волнения, известная под названием теории трохоидальных волн. Эта теория устанавливает внешнюю форму волны и законы движения частиц воды.

Форма волны, согласно рассматриваемой теории, представляет собой трохоиду, т. е. кривую, описываемую какой-либо точкой внутри круга, катящегося (без скольжения) по прямой, тогда как точка на окружности такого круга описывает кривую, называемую циклоидой (Рис. 6).

Рис. 6. Трохоида (1) и циклоида (2).

Сейши. Иногда в озере возникает колебание всей массы воды, причем по поверхности ее не распространяется никакой волны. Такое колебательное движение называется сейшами. При сейшах поверхность озера приобретает уклон то в одну, то в другую сторону. Неподвижная ось, около которой колеблется зеркало озера, называется узлом. Как показывают исследования, сейши более устойчивы в глубоководных водоемах, чем в мелководных.

Характеристика процесса нагревания и охлаждения воды в озерах.

Смена нагревания и охлаждения происходит неодновременно во всей толще воды. Наиболее резкие изменения температуры наблюдаются на поверхности водоема, откуда они под влиянием динамического и конвективного перемешивания, течений и волнения распространяются по всей толще воды.

Направление конвективного перемешивания, происходящего под влиянием разности плотностей воды на разных глубинах, будет различным в зависимости от того, выше или ниже 4°С (для пресных озер) температура к моменту возникновения конвекции.

Если температура воды озера от 0 до 4°С, то у поверхности, находится вода с более низкой температурой, а ниже в соответствии с изменением плотности располагаются слои с последовательно увеличивающей температурой, все более приближающейся к 4°С. В этом случае имеет место обратная термическая стратификация. С того момента, когда приходные составляющие теплового баланса начинают превышать расходные, увеличивается температура поверхностных слоев, которые, нагреваясь до 4°С, как более тяжелые опускаются вглубь, а на их место под влиянием конвекции поднимаются более холодные массы воды.

Когда температура по всей толще воды озера достигнет 4°С, дальнейшее нагревание поверхностных слоев приведет к повышению их температуры, но распространение тепла в глубину конвекцией происходить уже не будет. Возникнет прямая термическая стратификация, характеризующаяся убыванием температуры воды от поверхности в глубину.

Явление постоянства температуры по глубине, устанавливающейся осенью после нарушения прямой стратификации и весной после нарушения обратной стратификации, называют осенней и весенней гомотермией.

В результате суточного обмена тепла указанная картина несколько усложняется. Начиная с весны, после того как установится прямая температурная стратификация, в течение дня верхние слои воды будут нагреваться, а ночью, когда нагревание солнцем прекращается, охлаждаться. Этот процесс ведет, в конце концов, к выравниванию температуры в некотором поверхностном слое воды. В результате на нижней границе этого слоя температура резко изменяется, образуя так называемый слой температурного скачка. Слой скачка в течение лета непостоянен; появляясь весной, он летом углубляется и исчезает лишь осенью, когда нагревание озера ослабевает.

Слоем скачка вся толща озерной воды разделяется на два слоя:

- верхний – эпилимнион - с малыми градиентами температуры из-за интенсивного перемешивания;

- нижний – гиполимнион - также с малыми градиентами, но, наоборот, обусловленными слабым перемешиванием.

Изменение температуры воды в озерах в течение года. В соответствии с годовым ходом составляющих теплового баланса температура воды имеет ясно выраженный годовой ход:

В годовом цикле изменения температуры воды можно выделить периоды:

1) весеннего нагревания - начинается с момента, когда устанавливается направленный в воду тепловой поток. На замерзающих озерах весеннее нагревание воды начинается еще при наличии ледяного покрова за счет поглощения проникающей сквозь лед (после схода снега) солнечной радиации. Заканчивается период весеннего нагревания установлением температуры максимальной плотности во всей толще озера.

2) летнего нагревания - начинается с момента перехода гомотермии в прямую стратификацию. Перемешивание в это время осуществляется главным образом деятельностью ветра, при этом по мере усиления прямой стратификации сопротивление перемешиванию возрастает и теплообмен с нижележащими слоями становится все более затруднительным. Особенно большое сопротивление перемешиванию оказывает образующийся летом слой скачка, имеющий большие градиенты плотности и, следовательно, обладающий большой устойчивостью. Конвекция проявляется при этом только во время ночного охлаждения. В соответствии с характером распределения температуры по вертикали водная толща достаточно глубоких озер распадается на три слоя: эпилимнион, металимнион и гиполимнион.

Металимнион, является зоной температурного скачка. Нижняя граница металимниона неопределенна и постепенно переходит в гиполимнион.

3) осеннего охлаждения - начинается с момента появления отрицательного теплового потока и заканчивается установлением температуры наибольшей плотности во всей толще озера.

4) зимнего охлаждения - начинается с момента образования обратной стратификации температуры и на замерзающих озерах заканчивается с наступлением ледостава. С установлением ледяного покрова охлаждение осуществляется путем теплопроводности через толщу снега и льда. Т.к. этот процесс идет медленно, поступление тепла от дна начинает превышать расход и в мелководных озерах часто наблюдается повышение температуры воды после ледостава.

Ледовые явления.

С момента установления обратной стратификации при продолжающемся понижении температуры воздуха верхние слои воды охлаждаются до 0°С и начинается процесс замерзания озера.

Период времени, в течение которого на озере наблюдаются ледовые явления, может быть разделен на три характерные части: замерзание, ледостав и вскрытие.

Чтобы началось замерзание водоема, необходимо наличие переохлажденной воды и находящихся в ней ядер кристаллизации, а также непрерывный отток скрытой теплоты кристаллизации.

На небольших и неглубоких озерах при отсутствии ветра и сильном морозе уже незначительное переохлаждение в тончайшей поверхностной пленке воды создает условия, благоприятные для образования мелких игольчатых кристаллов льда, которые, скапливаясь, напоминают пятна застывшего на воде жира и называются салом. При дальнейшем охлаждении сало смерзается и превращается в ледяную корку с зеркально гладкой поверхностью, которая может покрыть водоем в течение одной тихой морозной ночи. Дальнейшее утолщение этой корки идет снизу и постепенно образуется прозрачный кристаллический лед – стеклец, ясинец, голубой лед. При наличии даже слабого ветра благодаря теплообмену с нижерасположенными более теплыми слоями ледообразование замедляется. В этих условиях кристаллы льда и сало возникают у берегов, где вода вследствие малой глубины охлаждается раньше, чем в открытой части озера. При дальнейшем охлаждении и смерзании сала образуются полосы из неподвижного льда – забереги. Постепенно забереги увеличиваются, продвигаясь к середине водоема, на поверхности которого появляется в изобилии сало. При безветрии сало быстро смерзается и поверхность озера покрывается коркой льда, выдерживающей влияние ветра до 5 м/с.

Большие мелководные озера при наличии умеренных ветров (до 5 м/с) замерзают аналогично малым.

На больших озерах в морозную и очень ветреную погоду происходит перемешивание большой толщи воды, которая переохлаждается. Наличие ядер кристаллизации способствует образованию мелких, пластинчатых кристаллов или смерзшихся в губчатую непрозрачную массу скоплений внутриводного льда, который может находиться в толще воды во взвешенном состоянии - глубинный лед, а также на дне – донный лед. Смерзаясь, кристаллы внутриводного льда всплывают и образуют на поверхности водоема скопления – шугу. Часто в шуге содержится сало и мелкобитый лед. Если шуга перемещается под действием стокового течения, образуется шугоход.

При выпадении снега на поверхность озера, температура воды которого равна 0С, снег не тает, а образует так называемую снежуру, похожую на мокрую вату. Дальнейшее охлаждение озера способствует образованию в его открытой части сала, смерзающегося в отдельные диски диаметром от 0,5 до 2-3 м – блинчатый лед. Этот лед беловатого цвета и имеет характерный небольшой валик, идущий по краю льдин. Возникает он от трения льдин между собой. В дальнейшем диски смерзаются, утолщаются и образуют большие ледяные поля или лавы, перегоняемые ветром в направлении берега, где они смерзаются с береговым льдом.

Таким образом возникает сплошной лед обычно с неровной, торосистой поверхностью, разрастание которого идет от центра озера к периферии. 

Помехой для окончательного установления ледостава является ветер, который может взламывать ледяной покров и, нагромождая льдины, создавать торосы.

Для окончательного установления ледостава необходима морозная штилевая погода в течение нескольких дней.

В период замерзания на некоторых озерах отмечаются такие явления как ледоход – движение льдин и ледяных полей, увлекаемых стоковыми течениями, и дрейф льда – перемещение его под действием ветра и волнения. Встречаются также ледяные валы – образования в виде гряд, сложенных из шуги и битого льда высотой 3-4 м и шириной в основании до 5 м; они образуются у волноприбойных берегов во время волнения. В некоторых озерах формируются пятры - грибовидной формы ледяные острова.

После установления сплошного ледостава дальнейшее нарастание льда в озерах зависит от разности потоков тепла, уходящего вверх сквозь лед в атмосферу и приходящего снизу из водной толщи.

В течение зимы лед подвергается деформациям, проявляющимся в образовании трещин. Трещины – термические – возникают при резких суточных изменениях температуры поверхностных слоев льда, если на нем отсутствует снег, а также под действием снега – динамические.

Образование трещин вызывается и большим количеством выпадающего снега. При значительной его толщине лед погружается в воду и дает трещины, по которым вода, выступая на поверхность, пропитывает снег и замерзает. В результате образуется мутный беловатый водно-снеговой лед с большим количеством пузырьков воздуха – наслуд. Если при оттепелях лежащий на поверхности льда снег подтаивает, а затем вновь замерзает, то образуется снеговой лед – лженаслуд. Наслуд образуется и при возникновении во время оттепелей на поверхности озерного льда луж, в дальнейшем замерзающих.

Вскрытие и освобождение озер ото льда происходит под влиянием тепловых и механических факторов (ветер, подъем уровня). При вскрытии озер вначале происходит таяние снега и льда у берегов и там образуются закраины, т.е. полосы открытой воды вдоль берегов. Весенний подъем уровня способствует отходу льда от берегов, возникает подвижка льда, которая сопровождается появлением разводьев - пространств открытой воды. Ветер и волнения способствуют разрушению ледяного покрова, который распадается на отдельные ледяные поля. Под действием ветра они образуют ледоход и разбиваются на льдины.

Формирование химического режима. Химический состав озерной воды определяется составом воды притоков и питающих озеро подземных вод, а также тесно связан с биологическими процессами, происходящими в озере, и с комплексом физико-географических условий, характеризующих бассейн водосбора озера. Особое значение в процессах формирования химического состава озерной воды имеет наличие или отсутствие стока из озера. В бессточных озерах, расходующих воду на испарение, происходит систематическое накопление поступающих солей и повышение их концентрации, поэтому они часто превращаются в соленые озера. Наоборот, в проточных озерах соли свободно выносятся вытекающими из них потоками, поэтому в проточных озерах обычно не наблюдается высокой концентрации солей.

Особенно бедны растворенными солями воды горных озер, расположенных среди малорастворимых кристаллических пород и питающихся слабоминерализованными талыми снеговыми и ледниковыми водами, а также воды озер, находящихся среди верховых сфагновых болот и питающихся почти исключительно атмосферными осадками.

Наиболее богаты солями озера засушливых и полупустынных областей.

Особо интенсивное поступление минеральных солей в водоемы может приводить к возникновению меромиктических (двуслойных) озер. В частности, такие водоемы могут возникнуть в результате сброса в них промышленно-коммунальных стоков, особенно отходов содовой промышленности.

Указанные водоемы характеризуются расслоением водной массы на два, практически не перемешивающихся между собой слоя. Нижний слой с водой повышенной плотности выступает как бы в форме жидкого дна для поверхностного слоя. Различие плотностей верхнего и нижнего слоев определяется количеством содержащихся в них минеральных веществ.

В зависимости от условий формирования нижнего слоя меромиктические озера разделяют на:

- эктогенные озера, в которых нижний более плотный слой сформировался в результате проникновения в озеро морской воды.

- креногенные -  у которых повышенная плотность монимолимниона обусловлена, притоком подземных вод высокой минерализации.

- биогенные озера - повышение плотности воды нижнего слоя происходит в результате постепенного накопления в придонном слое продуктов разложения органического вещества.

Биологические процессы.

Развивающиеся в озерах биологические процессы непосредственно обусловлены химическим составом озерной воды, ее прозрачностью, размером озера и связанным с ним термическим режимом.

Обитателей вод можно разделить на три основные группы в зависимости от условий их перемещения и зон распространения в озере:

1) планктонмельчайшие организмы, находящиеся во взвешенном состоянии и пассивно передвигающиеся вместе с водой;

2) нектонорганизмы, активно передвигающиеся в воде;

3) бентосорганизмы, живущие на дне озера.

По питательности содержащихся в озере веществ различают три типа озер:

1) олиготрофные озера - с малым количеством питательных веществ - характеризуются обычно большими или средними глубинами, значительной массой воды ниже слоя температурного скачка, большой прозрачностью, цветом воды от синего до зеленого, постепенным падением содержания кислорода ко дну, вблизи которого вода всегда содержит значительные количества О2 (не менее 60— 70% содержания его на поверхности);

2) эвтрофные озера - с большим содержанием питательных веществ - обычно отличаются небольшой глубиной (слой ниже температурного скачка очень невелик), они хорошо благодаря этому прогреваются, прозрачность воды в них невелика, цвет воды — от зеленого до бурого, дно устлано органическим илом. Содержание кислорода резко падает ко дну, где он часто исчезает совершенно;

3) дистрофные озера - бедные питательными веществами - встречаются в сильно заболоченных районах; вода отличается малой прозрачностью, желтым или бурым (от большого содержания гуминных веществ) цветом воды. Минерализация воды мала, содержание кислорода пониженное из-за расхода его на окисление органических веществ.

Озерные отложения.

Донные отложения в озерах формируются в результате:

- поступления в озеро речных и эоловых наносов и продуктов абразии - терригенные отложения;

- накопления продуктов химических реакций - хемогенные отложения;

- отложения остатков отмирающих живых организмов - биогенные отложения.

Биогенные отложения подразделяются на:

1) минеральные остатки отмерших организмов,

2) органические вещества.

Компоненты озерных отложений, поступающие в озеро извне, называют аллохтонными, а образующиеся в самом озере — автохтонными.

Особо важную форму озерных отложений представляют сапропели - гниющий ил - представляющие собой уплотнившиеся осадки преимущественно органического происхождения.

Местом образования сапропелей являются тихие и достаточно глубокие водоемы с застойной или малопроточной водой. В проточной, богатой кислородом воде образование сапропелевых отложений сильно затруднено, так как здесь в результате распада отмерших организмов от них не остается заметных следов. В мелководных озерах образованию сапропеля не благоприятствует относительно большое содержание кислорода по всей глубине водоема; развивающаяся в этом случае богатая растительность дает образование иному виду озерных отложений — торфу.

PAGE  8


EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  


 

А также другие работы, которые могут Вас заинтересовать

13175. Государственный бюджет РФ, его структура и динамика 186 KB
  КУРСОВАЯ РАБОТА Дисциплина Экономическая теория Тема: Государственный бюджет РФ его структура и динамика Содержание Введение Глава 1. Экономическая сущность структура доходы и расходы государственного бюджета Глав...
13176. КЛАССИФИКАТОРЫ СЛОЕВ, СЕМАНТИЧЕСКИХ ХАРАКТЕРИСТИК И ОБЪЕКТОВ КАРТ ОБСТАНОВКИ О ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ 2.12 MB
  КЛАССИФИКАТОРЫ СЛОЕВ СЕМАНТИЧЕСКИХ ХАРАКТЕРИСТИК И ОБЪЕКТОВ КАРТ ОБСТАНОВКИ О ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ Москва 2009 г. ОГЛАВЛЕНИЕ 1 ВВЕДЕНИЕ Классификатор предназначен для создания электронных карт обстановки о чрезвычайных ситу...
13177. КОМПЮТЕРНІ МЕРЕЖІ. Комунікаційна мережа 878.5 KB
  КОМПЮТЕРНІ МЕРЕЖІ 1. Введення Компютерна мережа обчислювальна мережа мережа передачі даних система звязку компютерів і/або компютерного устаткування сервери маршрутизатори і інше устаткування канали звязку. Для передачі інформації можуть бути використані р
13178. ВИВЧЕННЯ ЯВИЩА ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ 2.51 MB
  ЛАБОРАТОРНА РОБОТА № 17 ВИВЧЕННЯ ЯВИЩА ЕЛЕКТРОМАГНІТНОЇ ІНДУКЦІЇ Мета роботи: спостерігати явище електромагнітної індукції перевірити умови появи в котушці індукційного струму дослідити залежність напряму струму від властивостей магнітного поля перевірити с
13179. Дослідження МПС на базі мікропроцесорного комплекту КР580 821.5 KB
  ЛАБОРАТОРНА РОБОТА №1 Дослідження МПС на базі мікропроцесорного комплекту КР580 1. Мета роботи Вивчення структури та функцiональних можливостей мiкропроцесорної системи €œМIКРОЛАБ КР58О€ карти її пам’ятi органiв управл...
13180. Дослiдження роботи оперативних запамятовуючих пристроїв з довiльною вибiркою 238.5 KB
  ЛАБОРАТОРНА РОБОТА №2 Дослiдження роботи оперативних запамятовуючих пристроїв з довiльною вибiркою 1. Мета роботи Вивчення конструкцiї та режимами роботи оперативних запомятовуючих пристроїв з довiльною вибiркою ЗПДВ на прикладi мiкросхеми К565 РУ2. 2. Короткі те...
13181. ЛАБОРАТОРНА РОБОТА №3 Функціонування МП КР580ВМ80 (i8080) 2.11 MB
  ЛАБОРАТОРНА РОБОТА №3 Функціонування МП КР580ВМ80 i8080 1. МЕТА РОБОТИ. Дослідження структури принципу роботи мікропроцесора та виконання окремих команд і простих програм з використанням різних методів адресації в програмах. 2. КОРОТКI ТЕОРЕТИЧНI ВIД...
13182. Програмування МП КР580ВМ80 150 KB
  Мікропроцесорні системи Лабораторна робота№4 ЛАБОРАТОРНА РОБОТА №4 Програмування МП КР580ВМ80 1. Мета роботи Вивчення команд Асемблера для мікропроцесора КР580ВМ80. Отримання пр...
13183. Дослідження роботи ППІ КР580ВВ55 2.21 MB
  ЛАБОРАТОРНА РОБОТА №5 Дослідження роботи ППІ КР580ВВ55 1. Мета роботи Вивчення структури та принципу роботи програмованого паралельного iнтерфейса КР580ВВ55. 2. Короткі теоретичні відомості 2.1. Призначення та режими роботи iнтерфейса Мiкросхема КП580ВВ55 використов...