21687

Меры защиты от взаимных влияний

Практическая работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

При скрещивании цепи токи влияния поступающие в нагрузки включенные на концах цепей с каждых двух соседних участков имеют противоположное направление и общее влияние между цепями уменьшается. При скрещивании обеих цепей в одном месте уменьшение влияния не будет так как K0 и Kl дважды изменяют свой знак. Однако полная компенсация токов влияния скрещиванием все таки невозможна так как токи влияния на ближний конец с отдельных участков отличаются по амплитуде и фазе. Взаимные влияния возникают в результате наличия между цепями...

Русский

2013-08-03

177 KB

31 чел.

Практическое занятие № 2.

Меры защиты от взаимных влияний

Вопросы:

Скрещивание цепей воздушных линий;

2. Симметрирования кабелей связи;

3. Симметрирование при помощи контуров противосвязи.

1.Скрещивание цепей воздушных линий

Переходное затухание между нескрещенными цепями недопустимо велико. Для его уменьшения все двухпроводные цепи скрещивают, т.е. периодически меняют их провода местами.

При скрещивании цепи токи влияния, поступающие в нагрузки, включенные на концах цепей с каждых двух соседних участков, имеют противоположное направление и общее влияние между цепями уменьшается.

Такое положение равносильно изменению знака коэффициентов электромагнитной связи при скрещивании. Если на первом участке считать K0 величиной положительной, то на втором участке после скрещивания K0 отрицательна, на третьем - снова положительна и т.д.

При скрещивании обеих цепей в одном месте уменьшение влияния не будет, так как K0 и Kl дважды изменяют свой знак. Поэтому при подвеске на линии нескольких цепей каждая из них должна быть скрещена по своей схеме. Однако полная компенсация токов влияния скрещиванием все таки невозможна, так как токи влияния на ближний конец с отдельных участков отличаются по амплитуде и фазе. При нечетном числе участков всегда остается полностью нескомпенсированный участок, называемый неуравновешенной длиной линии. Линии связи всегда многопроводны и имеют различную длину. Поэтому скрещивание удобнее устраивать отдельными участками, секциями, на которых заканчивались бы схемы скрещивания всех цепей и отсутствовала неуравновешенная длина линии.

Секции составляют из 2n-элементов, где n  целое положительное число. За длину элемента принимают отрезки линии, равные одному, двум, трем пролетам. Чем больше в секции элементов, тем больше можно получить различных схем скрещивания.

На протяжении секции можно получить 2N-1 различных схем скрещивания.

Практически применяют секции из 8, 16, 32, 64, 128 и реже 256 элементов. Секции из 128 и 256 элементов называют основными, а остальные укороченными.

При проектировании и строительстве воздушных линий в первую очередь размещают основные секции, так как они позволяют получить лучшую взаимную защищенность для большого количества цепей. Укороченные секции применяют, если на линиях не укладывается целое число основных секций.

При составлении схемы скрещивания пользуются условными обозначениями, называемыми индексами.

Скрещивание цепей через равные промежутки (рис. 1) обозначают одноцифровыми индексами.

Через один эемент 1, через два элемента 2, через четыре 4 и т.д. Эти индексы и схемы скрещивания называют основными. Схемы, обозначаемые двумя индексами, получаются наложением основных схем. Например, если цепь, скрещенную по индексу 1, вторично скрестить по индексу 2, то через каждые два элемента скрещивания совпадут. Два скрещивания в одной точке взаимно компенсируются, и в результате цепь будет скрещена по индексам 1-2.

Цепь, скрещенную по индексам 1-2, можно дополнительно скрестить по индексу 8, и тогда схема скрещивания будет определяться индексами 1-2-8 и т.д.

Увеличение переходного затухания на ближний конец между скрещенными цепями зависит от схемы взаимной защищенности, которая определяется скрещиваниями цепей, не совпадающими при наложении схем друг на друга.

Например, если одна цепь скрещена по индексам 1-4, а вторая по 1-8 (рис. 1), то, наложив одну схему на другую, можно видеть, что схема взаимной защищенности имеет индексы 4-8.

Следовательно, для того, чтобы установить схему взаимной защищенности между любыми цепями, достаточно исключить одинаковые индексы из схемы скрещивания обеих цепей. Оставшиеся индексы и будут определять схему взаимной защищенности.

2. Симметрирования кабелей связи

Кабельные цепи в строительных длинах одного и того же типа кабеля всегда имеют различные электрические характеристики ( в пределах допустимых ТУ), и от того, как они будут соединены, зависит их защищенность от взаимных влияний и влияний внешних источников. Поэтому при выполнении монтажных работ с симметричными кабелями проводят симметрирование.

Симметрированием называют комплекс мероприятий, направленных на уменьшение влияний.

Взаимные влияния возникают в результате наличия между цепями электромагнитных связей. При этом в НЧ (до 4 кГц) кабелях преобладают электрические связи, а в ВЧ электромагнитные комплексные связи. Исходя из этого в НЧ кабелях достаточно провдить симметрирование емкостных связей; в ВЧ кабелях необходимо симметрировать все составляющие (активные и реактивные) электрических и магнитных связей.

Для симметрирования НЧ кабелей применяют метод скрещивания жил и конденсаторный метод.

Симметрирование ВЧ кабелей производят методами скрещивания жил и концентрированного симметрирования контурами противосвязи.

Скрутка кабельных цепей. Для уменьшения взаимных и внешних влияний изолированные жилы симметричных кабелей скручиваются в группы звездной (четверочной) или парной скруткой.

При звездной скрутке четыре изолированные жилы располагаются по углам квадрата, чем достигается симметричное расположение жил одной цепи относительно жил другой, и, таким образом, снижается влияние вследствие поперечной асимметрии. Однако строго симметричного расположения жил получить невозможно из-за конструктивных неоднородностей. Влияние между цепями различных четверок уменьшается скруткой.

Скрутка жил не только снижает влияние вследствие поперечной симметрии, но и уменьшает продольную асимметрию, так как выравниваются расстояния жил относительно оболочки.

Действие скрутки аналогично скрещиванию проводов на воздушной линии связи. Скрутка представляет собой равномерное, непрерывное вращение жил относительно оси с неизменным шагом по всей длине кабеля.

Шагом скрутки называют длину участка, на котором жилы группы совершают полный оборот вокруг оси скручивания.

С учетом требований к гибкости и устойчивости конструкций  кабеля длину шагов скрутки в группы принимают равной 100-300 мм, а повивов 400-600 мм (кабели дальней связи).

Шаги скрутки различных групп должны быть согласованы. Подбор и согласование шагов производится по участкам, называемым секциями симметрии или секциями защиты.

Длина секции не должна быть больше одной восьмой длины волны высшей передаваемой частоты.

Согласование шагов каждой группы со всеми остальными находится в зависимости от спектра передаваемых частот. Если кабель НЧ, то при четном количестве групп в повиве достаточно взять два согласованных шага I, II и чередовать так, как показано на рис. 1.

При нечетном количестве групп в повиве потребуется 3 различных шага для того, чтобы избежать появления соседних групп, скрещенных с одинаковым шагом.

В ВЧ кабелях шаги скрутки всех групп должны быть неодинаковы и согласованы между собой.

Это объясняется тем, что в НЧ кабелях влияние между цепями обусловлено только одной емкостной связью, для которой промежуточные группы действуют как экран. В ВЧ кабелях необходимо считаться со всеми видами связи.

Для уменьшения  влияния между группами, находящимися в соседних повивах, последние скручиваются в разные стороны, и шаги скрутки согласовываются с шагами скрутки групп.

При пучковой скрутке (городские кабели) повивы в пучках скручиваются в одну сторону, что позволяет уменьшить сечение сердечника кабеля. Для обеспечения механической устойчивости при такой скрутке направление скрутки всего сердечника противоположно направлению скрутки его пучков.

Изобразим кабель, содержащий одну четверку, помещенную в оболочку (рис. 2).

Переход энергии на кабельные цепи происходит через землю и защитные металлические оболочки кабеля.

3.Симметрирование при помощи контуров противосвязи

Сущность этого способа: токи влияния, вызванные электромагнитными связями между цепями компенсируются токами влияния противоположной фазы, создаваемыми с помощью контуров, включаемых между цепями.

На рис. 3 приведены две реальные цепи, распределенные по длине связи, для ближнего и дальнего концов показаны в виде сосредоточенных эквивалентных связей Коэ и Кlэ.

Компенсация токов влияния, вызываемых этими эквивалентными связями осуществляется при помощи противосвязей Коп и Кlп.

 На основании рис.3 ток влияния на ближнем конце

,

а ток противосвязи

.

Следовательно, при условии полной компенсации  значение противосвязи для ближнего конца

.

Аналогично для дальнего конца

 

Вывод:

Так как  и  зависит от f, то полная компенсация влияния на ближний конец возможно только на одной частоте. На частотах, близких к ней, компенсация будет неполной. Кроме того, чем больше  и  и разность , тем в меньшем диапазоне частот сохраняется эффективностьь симметрирования. Поэтому полная компенсация будет в том случае, когда контур противосвязи включен в месте расположения естественной связи, что практически осуществить трудно. Часто устанавливать контуры экономически невыгодно.

Длина пути токов влияния на дальний конец со всех участков линии одинакова. И при =,  во всем диапазоне передаваемых частот, если контур точно воспроизводит частотную зависимость естетственной связи возможна компенсация влияния на дальний конец.

При этом противосвязь может быть включена в любом месте усилительного участка. Все же целесообразнее включать в середине участка, для того чтобы не увеличивать влияния на ближний конец.

Электромагнитные связи между цепями носят комплексный характер, и . Поэтому контуры противосвязи должны иметь такую же характеристику, но воспроизводить действующие в кабеле связи в противофазе.

Контуры противосвязи комплектуются из R и C или из R и L. Применяются и специальные дифференциальные трансформаторы. Наибольшее применение получили контуры из R и C, соединенные последовательно. Параллельное соединение R и C снижает сопротивление изоляции цепей.

Настройка контуров осуществляется подбором величин R и C и включением в соответствующие жилы цепей.


 

А также другие работы, которые могут Вас заинтересовать

28165. Корпускулярно-волновой дуализм. Гипотеза Луи де-Бройля. Опыты по дифракции микрочастиц и их интерпретация 109 KB
  Гипотеза Луи деБройля. Такие волны получили название фазовых волн волн вещества или волн де Бройля. Так как частица и волна де Бройля являются различными аспектами одного и того же физического объекта то между ними должна существовать однозначная связь; релятивистски инвариантным соотношением между 4векторами характеризующими частицу и соответствующую ей волну де Бройля является формула 2 или ; . 3 Выражения 3...
28166. ПОНЯТИЕ КВАНТОВОГО СОСТОЯНИЯ ВОЛНОВАЯ ФУНКЦИЯ. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТИ 100.5 KB
  Так функцией состояния свободной частицы является плоская монохроматическая волна де Бройля . 1 Для частицы подверженной внешнему воздействию например для электрона в поле ядра это волновое поле может иметь весьма сложный вид. Волновая функция зависит от параметров микрочастицы и от тех физических условий в которых частица находится. Согласно статистической интерпретации волн де Бройля вероятность локализации частицы определяется интенсивностью волны де Бройля так что...
28167. УРАВНЕНИЕ ШРЁДИНГЕРА. ПРЯМОУГОЛЬНАЯ ПОТЕНЦИАЛЬНАЯ ЯМА. ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР. ТУННЕЛЬНЫЙ ЭФФЕКТ 216 KB
  Решением стационарного УШ является функция состояния частицы . Потенциальная яма это область пространства в которой потенциальная энергия частицы меньше чем за ее пределами. Рассмотрим решение стационарного УШ для частицы находящейся в бесконечно глубокой одномерной потенциальной яме. Найдем функции состояния и значения энергии отвечающие возможным состояниям частицы в этом потенциальном поле.
28168. Магнитные свойства атомов. Опыты Штерна и Герлаха. Спин электрона. Спектроскопические проявления спина электрона 145 KB
  Спин электрона. Спектроскопические проявления спина электрона Природа магнетизма явления известного еще с начала XIX века была понята только после создания квантовой механики. Орбитальное движение электрона движение относительно ядра атома характеризуется магнитным моментом . 1 Здесь ‒ гиромагнитное отношение 2 где m масса электрона е модуль заряда электрона момент импульса электрона модуль которого квантуется по правилу .
28169. Принцип тождественности неразличимых микрочастиц. Бозоны и фермионы. Проблема гелия 145.5 KB
  Проблема гелия В основе исследования сложных атомов как и атома водорода также лежит уравнение Шредингера решением которого является функция состояния атома. Однако теперь функция состояния зависит от пространственных координат всех электронов атома и от времени. Для получения правильной функции состояния системы электронов необходимо учитывать принцип тождественности неразличимых частиц. Суть это принципа состоит в следующем: В силу неразличимости частиц состояния системы получающиеся друг из друга перестановкой обеих частиц должны быть...
28170. Многоэлектронные атомы. Электронные оболочки атома и их заполнение. Физическое объяснение периодического закона. Рентгеновские спектры атомов 186.5 KB
  Электронные оболочки атома и их заполнение. Такая одноэлектронная собственная функция атома называется атомной спинорбиталью АО. При рассмотрении многоэлектронного сложного атома можно воспользоваться приближением центрального поля. Однако в сложных атомах энергия электронов зависит как от главного квантового числа так и от орбитального квантового числа то есть происходит снятие вырождения по .
28171. Атом во внешних полях. Простой и сложный эффект Зеемана 165.5 KB
  Простой и сложный эффект Зеемана Расщепление спектральных линий атомных систем помещенных во внешнее магнитное поле называется эффектом Зеемана 1896 г. Расщепление линии на три компонента названо простым нормальным эффектом Зеемана. Расщепление линии более чем на три компонента названо сложным анормальным эффектом Зеемана Количественное объяснение простого эффекта Зеемана с позиций классической теории дано Лоренцем. Последовательное описание обоих вариантов эффекта Зеемана дано в рамках квантовой теории с учетом спинового магнитного...
28172. ПОСТУЛАТЫ БОРА. КОМБИНАЦИОННЫЙ ПРИНЦИП 83 KB
  В начале XX века установлено что всю совокупность спектральных линий атомарного водорода можно разбить на серии то есть на отдельные группы в пределах каждой из которых имеет место определенная закономерность в расположении и интенсивности спектральных линий. При из всего спектра атома выделяется определенная спектральная серия: соответствует серия Лаймана серия Бальмера серия Пашена серия Брэкета серия Пфунда и т. 2 Из комбинационного принципа Ритца вытекает следствие:...