21724

Общие принципы определения ущерба от нарушений электроснабжения

Лекция

Энергетика

Общие принципы определения ущерба от нарушений электроснабжения Проблема оценки ущерба от нарушений электроснабжения вызываемых отказами электрооборудования возникает как при проектировании так и при эксплуатации энергетических объектов. При проектировании потребность в характеристике ущерба ощущается как правило когда определяется экономическая эффективность капитальных вложений при выборе вариантов технических и организационнохозяйственных решений влияющих на степень надежности электроснабжения потребителей. При эксплуатации...

Русский

2013-08-03

80 KB

49 чел.

PAGE  4

ЛЕКЦИЯ № 7

ТЕМА № 1. Общие принципы определения ущерба от нарушений электроснабжения

Проблема оценки ущерба от нарушений электроснабжения, вызываемых отказами электрооборудования, возникает как при проектировании, так и при эксплуатации энергетических объектов. При проектировании потребность в характеристике ущерба ощущается, как правило, когда определяется экономическая эффективность капитальных вложений, при выборе вариантов технических и организационно-хозяйственных решений, влияющих на степень надежности электроснабжения потребителей. При эксплуатации характеристики ущерба от отказов находят применение в задачах определения экономической эффективности капитальных вложений в действующее производство при реконструкции, модернизации и техническом перевооружении объектов энергетики. Кроме того, сведения об ущербе необходимы для решения комплекса задач:

- построения графиков отключений и ограничений потребителей при дефицитах мощности и энергии в энергосистемах и энергообъединениях;

- размещения устройств автоматической аварийной разгрузки (САОН, АЧР);

- определения величины и мест размещения аварийных запасов оборудования и материалов;

- определения эффективности организационно-технических мероприятий и др.

Количественное и качественное проявление экономических потерь, возникающих от несовершенства принимаемых технических и организационно-хозяйственных решений, проявляется в перечисленных задачах по-разному. Существенно в них различается и информационная осведомлённость принимающего решения о возможных последствиях, которые следует ожидать при практической реализации намеченных решений. Многообразие задач порождает и многообразие моделей и методов учёта последствий ненадёжного электроснабжения потребителей. Поэтому очень важно, чтобы информация о возможном ущербе соответствовала постановке и условиям решаемой задачи.

В самом общем виде понятие «ущерб» представляет стоимостное выражение реакции потребителей электроэнергии и смежных систем на нарушения функциональных режимов связей, объединяющих эти системы с рассматриваемой системой энергетики.

На выбор формы модели оценки ущерба и её параметров оказывают влияние многие факторы, среди которых можно отметить следующие:

1. Назначение модели: а) оценка фактического ущерба от реально имевших место нарушений электроснабжения; б) оценка среднего ожидаемого ущерба от возможных погашений нагрузки на действующих промышленных объектах; в) прогнозирование ущерба на действующих или проектируемых предприятиях.

2. Временной уровень исследований, использующих сведения об ущербе: а) долгосрочное прогнозирование; б) проектирование; в) эксплуатация; г) текущее оперативное управление.

3. Иерархический уровень принятия решений: а) энергообъединения; б) районные энергосистемы; з) узлы электроснабжения промышленных районов; г) системы внутреннего и внешнего электроснабжения отдельных потребителей.

4. Характер отключения нагрузки: а) внезапное; б) плановое; в) эпизодическое; г) регулярное.

5. Наличие и достоверность информации: а) о составе отключаемых производственных объектов у потребителей; б) о технико-экономических показателях производства; в) о технологической схеме, объёме и размещении запасов продукции и других резервов производства; г) о фактическом состоянии производства в момент отключения нагрузки.

6. Возможность управления ущербом: а) за счёт выбора состава отключаемых электроприёмников и производственных объектов у потребителей; б) путём изменения частоты, глубины и длительности отключений; в) созданием специальных или использованием существующих резервов производства.

В настоящее время сформировались два основных принципа определения ущерба от нарушений электроснабжения потребителей. Первый основан на детальном подсчёте всех потерь и затрат, являющихся следствием отказа, второй – на использовании удельных характеристик ущерба, определяемых с той или иной степенью приближения, агрегированных в пределах типа технологического производства, отрасли или промышленности в целом.

Первый принцип получил название микромоделирования. Он используется в задачах, где возможно получение достаточно подробных сведений о питаемом производстве, изменения нормальной работы которого при нарушениях электроснабжения будут рассматриваться.

Второй принципмакромоделирования – обеспечивает исходную информацию о возможном ущербе для решения крупномасштабных задач, когда последствия отключений потребителей можно оценить только ориентировочно, а технические решения, в которых используются сведения об ущербе, затрагивают надёжность энергосистемы или её крупных узлов.

Очевидно, что первый принцип позволяет получить более точную оценку ущерба, но требует обширной первичной информации. Второй принцип основывается на ограниченных исходных данных и даёт возможность оценить приближённо величину ущерба. Тем не менее, второй принцип для целого комплекса системных задач является единственно возможным, и считается, что его точность для этих задач приемлема. Таким образом, микромоделирование и макромоделирование имеют практическую значимость и взаимно дополняют друг друга.

При проектировании промышленных СЭС, где возможно получение достаточно подробной информации, обеспечивающей реализацию микромоделирования, предпочтение должно отдаваться первому пути оценки ущерба. Этот путь обеспечивает возможность решения практически любых задач, требующих сведений об ущербе от нарушений электроснабжения. Однако реализация его пока встречает некоторые затруднения из-за отсутствия информации. Получение её требует проведения подробных расчётов для конкретного производства или характерной группы предприятий.

Если таких сведений нет, то приходится идти на использование макромоделей, полученных с наименьшей степенью агрегирования, т.е. по объектам, близким по составу к питаемым от рассматриваемой СЭС. При этом необходимо чётко представлять допустимые условия их применения.

Нарушения электроснабжения потребителя вызывают несколько составляющих ущерба, возникающих в разных взаимосвязанных системах. Обычно различают следующие составляющие:

- ущерб потребителей электроэнергии;

- ущерб потребителей продукции или услуг, при производстве которых произошло нарушение электроснабжения;

- ущерб окружающей природной среде;

- ущерб энергоснабжающей организации.

Последняя составляющая при анализе надёжности электроснабжения на уровне отдельной производственной СЭС обычно не рассматривается ввиду малого её влияния на суммарный ущерб. Составляющая, которая учитывает влияние на окружающую среду, в расчётах подобного рода также обычно не фигурирует, поскольку допустимое нормативными требованиями это влияние крайне ограничено, а реальное воздействие должно оцениваться по специальным методикам.

Отказы в питающих СЭС происходят относительно редко и достаточно быстро ликвидируются. Поэтому их влияние на смежные предприятия (особенно при наличии запасов, сырья и готовой продукции) не сказывается. Только при «жёсткой» связанности работы смежных предприятий с рассматриваемым производством эту составляющую необходимо учитывать в обязательном порядке. Так, перед началом проектирования следует проанализировать, к какой категории можно отнести внешние связи предприятия – к сильным (жёстким) или слабым.

ТЕМА № 2 Оценка ущерба методами макромоделирования

При составлении моделей оценки ущерба его представляют двумя составляющими: первая – из-за простоя производственного объекта, его оборудования, рабочей силы с соответствующей недовыработкой продукции; вторая – экономические потери, связанные с неуправляемым остановом объектов производства вследствие нарушения электроснабжения (поломка оборудования, порча сырья и т.д.), и потери от вынужденного изменения режима работы производства (затраты на повторный пуск производства, возрастание расходов материальных, энергетических и трудовых ресурсов при неоптимальном режиме работы производства, потери от общего расстройства технологического процесса и т.д.). Вторая составляющая зависит от технологических особенностей каждого производства, её оценка в общем виде на уровне макромоделей невозможна. Поэтому при макромоделировании ущерба ограничиваются рассмотрением только первой составляющей.

Анализируя последствия погашения узлов нагрузки систем энергетики в качестве выходных характеристик этих систем (поскольку через них осуществляется связь с системой потребления энергии), рассматривают отключённую у потребителя мощность  и недоотпущенную ему вследствие нарушения электроснабжения энергию .

При существующей степени энерговооруженности большинства процессов имеется достаточно жёсткая и однозначная связь между выпуском продукции (П) и потребляемой энергией (Э), а также между их изменениями:

, .

При макромоделировании удельных характеристик ущерба – иногда считают, что будет недополучена продукция в стоимостном выражении, равная полной стоимости недовыпущенной продукции i -го звена . Таким образом, национальный доход уменьшится на значение полной стоимости продукции

.

Удельный ущерб при этом

,

где  и  – стоимость продукции и потребление электроэнергии

i-м предприятием за год.

По другой модели оценка удельного ущерба производится по выражению

.

Здесь приведённые годовые затраты на создание производственной мощности предприятия (включая обслуживающий персонал) с годовым электропотреблением

.

Последствия отказов узлов нагрузки систем энергетики зависят:

- от режимов работы потребителей в момент отказа узла нагрузки;

- соотношения между нагрузкой потребителей на периоде восстановления работоспособности отказавшего узла и возможностями её обеспечения системой энергетики;

- схемы структурных связей между питаемыми электроприёмниками и источниками энергии;

- функциональных возможностей потребителей энергии при отключениях разных групп электроприёмников;

- длительности восстановления работоспособности отказавшего узла нагрузки;

- общего количества имевших место отказов узлов нагрузки и т.д.

Чем выше иерархический уровень узла нагрузки в общей СЭС, тем больше неопределённость информации о питаемых потребителях, с одной стороны, и больше возможность выбора состава отключаемых для снижения нагрузки электроприёмников – с другой. Возможность выбора состава электроприёмников, отключаемых для снижения потребляемой мощности при отказах узлов нагрузки в энергосистеме, позволяет не рассматривать всё множество комбинаций отключения питаемых электроприёмников, а ограничиться только такими, при которых экономические потери потребителей будут наименьшими.

Достаточно широкая свобода выбора состава электроприёмников, отключаемых при отказах узлов нагрузки, позволяет их отбирать так, чтобы удельные потери потребителей от каждого отключенного киловатта мощности или киловатт-часа недополученной энергии были примерно одинаковы. Разумеется, такая линейная зависимость сохраняется только при условии, что отключаемая у потребителей мощность существенно меньше общей нагрузки ЭЭС. В используемых моделях принимается, что зависимость ущерба от отключаемой мощности и длительности отключения может быть выражена формулами

, , ,

где  – удельный ущерб, руб./кВт;  – удельный ущерб, руб./кВт∙ч;  – отключённая мощность, кВт;  – недополученная электроэнергия, кВт∙ч;  – длительность перерыва электроснабжения, ч.

При рассмотрении последствий отказов узлов нагрузки промышленных СЭС необходимо учитывать, что здесь состав отключаемых электроприёмников либо фиксирован, либо управляем в очень ограниченных пределах. Поэтому при анализе их надежности использование линейных моделей оценки ущерба, увязывающих его значение только с отключенной при отказе узла мощностью электроприёмников или недополученной от узла энергией, может приводить к существенным ошибкам в расчётах.

Для формирования схемы связей электросети со схемой питаемого производства такие модели непригодны. По ним можно только довольно грубо оценивать суммарный ущерб по всей совокупности подсистем производственного электроснабжения. При этом в расчётные выражения оценки суммарного ущерба должна подставляться не нагрузка электроприёмников, подключённых к узлу , а суммарное снижение потребляемой предприятием мощности при погашениях i-го узла нагрузки . Причём это значение может быть значительно больше, чем .


 

А также другие работы, которые могут Вас заинтересовать

13775. Методы решения логарифмических неравенств 33.5 KB
  Методы решения логарифмических неравенств. 1 Уравнения вида решаются следующим образом. Уравнению соответствует равносильная система 2 Уравнения вида решаются следующим образом. Уравнению соответствует равносильная система 3 Уравн
13776. Методы решения неравенств, содержащих знак модуль 121 KB
  Методы решения неравенств содержащих знак модуль. I Неравенства вида решаются следующим образом. Если то решений нет Если то Если то неравенству равносильна система II Неравенства вида решаются следующим образом. Если то решений нет Если то решени
13777. Методы решения показательно-степенных уравнений 25 KB
  Методы решения показательностепенных уравнений. 1 Уравнения вида решаются следующим образом. Уравнению соответствует пять случаев: обязательно проверка. обязательно проверка. обязательно проверка. обязательно проверка....
13778. Методы решения показательных уравнений 23 KB
  Методы решения показательных уравнений. 1 Уравнения вида решаются следующим образом. Если следовательно тогда Введем замену. Пусть тогда...
13779. Методы решения тригонометрических уравнений 435 KB
  Методы решения тригонометрических уравнений. 1 Решение простейших тригонометрических уравнений. По определению арифметического квадратного корня перейдем к равносильной системе уравнений. Ответ: 2 Решение тригонометрических уравнений раз...
13780. Методы решения уравнений высших степеней 442.5 KB
  Методы решения уравнений высших степеней. I Решение уравнений с помощью деления в столбик. Очевидно корень уравнения Очевидно корень уравнения Ответ: 5;2;3;4 II Возвратные уравнения и к ним сводящиеся. Уравнение называется возвратным если в нем ко...
13781. Методы решения уравнений, содержащих знак модуль 89 KB
  Методы решения уравнений содержащих знак модуль. I Уравнения вида решаются следующим образом. Если то корней нет. Если то уравнению соответствует уравнение Если то уравнению соответствует равносильная совокупность II Уравнения вида решаются следующим...
13782. АЗБУКА ПРАВА 821.5 KB
  Каждая отрасль знаний, как бы она ни была сложна, имеет в своей основе некоторые начальные, первичные данные. Кирпичики, из которых складывается многоэтажное здание науки. Иными словами, - в каждой науке существует своя азбука
13783. Теория государства и права А.Б. Венгеров 3.03 MB
  Венгеров А.Б. Теория государства и права: Учебник написанный в соответствии с курсом Теория государства и права для юридических вузов качественно отличается от выходивших ранее книг по этой дисциплине. Сохраняя все то ценное что наработано в теоретикоправовой