21799

Методы количественного оценивания систем

Лекция

Финансы и кредитные отношения

1 Общая характеристика количественных методов оценивания Исходная задача количественного оценивания систем формулировалась в терминах критерия превосходства вида: 6. Таким образом наличие неоднородных связей между отдельными показателями приводит к проблеме корректности критерия превосходства. Общность подходов состоит в том что оценивание систем по критериям производится с помощью шкал. Методы устранения многокритериальности задач принятия решений: Выделения главного критерия; Лексикографической оптимизации; Последовательных уступок;...

Русский

2013-08-03

130 KB

51 чел.

Лекция 6 Методы количественного оценивания систем

Вопросы:

6.1 Общая характеристика количественных методов оценивания

6.2 Принятие решений в условиях определенности

Литература:

1 Анфилатов В.С. и др. Системный анализ в управлении. – М.: Финансы и статистика, 2003 г. – стр. 130-132, 140-148.

6.1 Общая характеристика количественных методов оценивания

Исходная задача количественного оценивания систем формулировалась в терминах критерия превосходства вида:

 (6.1)

Однако поскольку большинство частных показаний связанных между собой так, что повышение одного ведет к понижению другого, такая постановка была признана некорректной для большинства практических приложений.

Пример, пусть система передачи данных оценивается по двум показателям:

– пропускная способность;

– достоверность передачи данных.

Достоверность передачи данных достигается введением информационной избыточности (помехоустойчивое кодирование, алгоритмы восстановления после сбоев), которая приводит к снижению пропускной способности канала передачи данных. Поэтому формальная постановка задачи (6.1) некорректна.

Таким образом, наличие неоднородных связей между отдельными показателями приводит к проблеме корректности критерия превосходства.

Для решения указанной проблемы разработаны методы количественной оценки систем:

  •  методы векторной оптимизации;
  •  методы теории полезности;
  •  методы инженерии знаний.

Методы векторной оптимизации основаны на использовании функции свертки, т.е. многокритериальный вектор, выраженный через показатели исхода операции, заменяется скалярной величиной.

Методы теории полезности основаны на аксиоматическом использовании отношения предпочтения на множестве векторных оценок систем.

Методы инженерии знаний основаны на построении семиотических моделей оценки систем. В таких моделях система предпочтении ЛПР формализуется в виде набора логических правил, по которым осуществляется выбор альтернатив.

Общность подходов состоит в том, что оценивание систем по критериям производится с помощью шкал.

Пусть  – множество оценок по -му критерию,

 – системы, рассматриваемые как альтернативы.

Тогда множество векторных оценок альтернатив будем называть множество , а процесс присваивания векторных оценок альтернатив описывается отношением

6.2 Принятие решений в условиях определенности 

Оценивание систем в условиях определенности производится с использованием методов векторной оптимизации на основе шкал.

Пусть  – векторный критерий, представляющий собой отображение

где  – векторная оценка альтернативы ,

 – шкала всех действительных чисел.

Тогда общая задача векторной оптимизации формулируется следующим образом

, (6.2)

где  – оператор оптимизации, определяющий семантику оптимальности.

Решением задачи (6.2) является множество

 (6.3)

Реализация (6.3) осуществляется в 3 этапа:

  1.  На основе системного анализа определяются частные показатели и критерии эффективности системы.
  2.  Формулируется задача многокритериальной оптимизации в форме (6.2).
  3.  Путем скаляризации критериев устраняется многокритериальность.

Методы устранения многокритериальности задач принятия решений:

  1.  Выделения главного критерия;
  2.  Лексикографической оптимизации;
  3.  Последовательных уступок;
  4.  Свертывания векторного критерия в скалярный.
  5.  Агрегирование

В методе выделения главного критерия ЛПР назначает один критерий главным, а остальные выводятся в состав ограничений, т.е. указываются границы, в которых эти критерии могут находиться.

Выражение (6.2) примет вид:

                                           (6.4)

.

В методе лексикографической оптимизации предполагается, что критерии, составляющие векторный критерий , могут быть упорядочены на основе отношения абсолютной предпочтительности.

При этом критерии нумеруются так, что наиболее важному из них соответствует номер 1. Тогда на первом шаге выбирается множество альтернатив , имеющих наилучшие оценки по первому критерию. Если  единично, то решение принято. Если >1, то на втором шаге выбирается множество , имеющее наилучшие оценки по и так далее, пока не будет выявлена лучшая альтернатива. При поиске решения задачи (6.2) в описанной процедуре, как правило, будут использоваться не все, а лишь наиболее важные критерии, что не всегда может быть оправдано.

Поэтому в методе последовательных уступок для каждого из проранжированных по важности критериев назначается допустимое отклонение значения критерия от наилучшего. Затем на первом шаге производится построение подмножества альтернатив , для которых отклонение оценки по первому критерию от экстремального значения не превышает допустимого отклонения – «уступки». Далее строится подмножество  на основе второго критерия и его уступки и т.д.

При этом уступки назначаются таким образом, что бы было истинным высказывание

,

поскольку превращение множества  на каком-либо шаге  в одноэлементное или пустое приводит к невозможности оптимизации по остальным  критериям.

Методы свертывания векторного критерия в скалярный. В этих методах задача (6.2) заменяется задачей

 (6.5)

где  – скалярный критерий, представляющий собой некоторую функцию от значений компонентов векторного критерия

Функция  называется сверткой.

Методика получения функции свертки распадается на 4 задачи:

  1.  Обоснование допустимости свертки.
  2.  Нормализация критериев для их сопоставления.
  3.  Учет приоритетов (важности) критериев.
  4.  Построение функции свертки, позволяющей решить задачу оптимизации.

Обоснование допустимости свертки. Требует подтверждения, что рассматриваемые критерии являются однородными. Известно, что показатели эффективности разделяются на 3 группы: показатели результативности, ресурсоемкости и оперативности. Разрешается свертка показателей, входящих в обобщенный показатель для каждой группы отдельно. Нарушение этого принципа ведет к потере физического смысла критерия.

Нормализация критериев. Проводится подобно нормировке показателей.

Учет приоритетов. Осуществляется путем задания вектора коэффициентов важности критериев

где  – коэффициент важности критерия , обычно совпадающий с коэффициентом значимости частного показателя качества.

В результате нормализации и учета приоритетов критериев вместо исходной векторной оценки  альтернативы  образуется новая векторная оценка

.

Именно эта полученная оценка подлежит преобразованию с использованием функции свертки.

Построение функции свертки. Известны несколько способов свертки, использование которых зависит от характера критериев и целей оценивания. Наиболее часто используются аддитивная и мультипликативная свертки.

Аддитивная свертка компонентов векторного критерия состоит в представлении обобщенного скалярного критерия в виде суммы взвешенных нормированных частных критериев

 (6.6)

Свертка (6.6) основана на использовании принципа справедливой компенсации абсолютных значений нормированных частных критериев. Суть принципа: справедливым следует считать компромисс, при котором суммарный уровень абсолютного снижения значения одного или нескольких показателей не превышает суммарного уровня абсолютного увеличения значений других показателей.

Недостатком данной методики является то, что низкие оценки по одним критериям могут компенсироваться высокими оценками по другим критериям.

Мультипликативная свертка компонентов векторного критерия состоит в представлении обобщенного скалярного критерия в виде произведения

 (6.7)

В этом критерии схема компромисса предполагает оперирование не с абсолютными, а относительными изменениями частных критериев.

Правомочность мультипликативного критерия основывается на принципе справедливой относительной компенсации: справедливым следует считать такой компромисс, при котором суммарный уровень относительного снижения значения одного или нескольких критериев не превышает суммарного уровня относительного увеличения значений других критериев.

В математической форме такое условие оптимальности имеет вид:

где  – приращение величины -го критерия;

 – первоначальная величина -го критерия.

Достоинством мультипликативного критерия является то, что при его использовании не требуется нормировка частных критериев.

Недостатки критерия: критерий компенсирует недостающую величину одного частного критерия избыточной величиной другого и имеет тенденцию сглаживать уровни частных критериев за счет неравнозначных первоначальных значений частных критериев.

Выбор между аддитивной и мультипликативной свертками частных критериев определяется степенью важности абсолютных или относительных изменений значений частных критериев соответственно.

Кроме свертки векторного критерия в теории векторной оптимизации особое место занимает агрегирование. Если из существа задачи следует полная недопустимость компенсации значений одних показателей другими, т.е. требуется обеспечить равномерное подтягивание всех показателей к наилучшему уровню, то используют функцию агрегирования вида:

,                                          (6.8)

Если из существа задачи следует, что одни показатели желательно увеличить, а другие уменьшить, то тогда используют функцию агрегирования в виде отношений одних показателей к другим, т.е.

                                                         (6.9)

где  – номер показателя, значения которого желательно увеличить,

 – номер показателя, значения которого желательно уменьшить

Часто первая группа показателей отождествляется с целевым эффектом, а вторая – с затратами на его достижение.

Рассмотренные группы методов представляют широкие возможности для анализа многокритериальных оценок в целях выявления наилучших альтернатив. Однако условия применимости тех или иных методов вследствие эвристического характера последних не могут быть сформулированы строго.


 

А также другие работы, которые могут Вас заинтересовать

70011. Развитие творческих способностей у детей дошкольного возраста в процессе изобразительной деятельности 55.67 KB
  Задачи исследования: Изучить психолого-педагогическую и методическую литературу по данной теме. Выявить условия развития творческих способностей средствами изобразительной деятельности. Подобрать и апробировать диагностические методики способствующие изучению творческих...
70012. Техническое обслуживание тормозной системы. Ваз 2115 137.77 KB
  Тормозная система служит для снижения скорости и быстрой остановки автомобиля, а также для удержания его на месте при стоянке Наличие надежных тормозов позволяет увеличить среднюю скорость движения, а, следовательно, эффективность при эксплуатации автомобиля.
70013. Яскраві виразники українського національного характеру в романі П. Куліша «Чорна рада» 130.72 KB
  Пантелеймон Куліш належить до тих діячів які будучи багатогранно обдарованими зробили величезний внесок у розвиток літератури мистецтва мови науки та української культури загалом. Постать Пантелеймона Куліша майже епохальна.
70014. Техники окрашивания волос разными способами 419.19 KB
  Постоянство - удел немногих. Большинство же предпочитают перемены быстрые и эффективные. И в запасе всегда есть один верный ход: перекрасить волосы. Тенденция сегодняшнего дня - это отказ от моно-цвета. Иногда при окрашивании используются два-три смешанных оттенка для придания...
70015. Улучшение технических характеристик электрооборудования для снижения затрат 248.49 KB
  За годы существования колледжа он многократно перепрофилировался в связи с этим появлялись новые электроприемники что отражается на величине тока. Выбор рода тока и напряжения Для снабжения электроприёмников волховского алюминиевого колледжа имеются источники электроэнергии: гидроэлектростанция...
70016. Исследование модели фрактального броуновского движения 1.14 MB
  В данной работе рассматривается теоретические основы фрактального броуновского движения (ФБД), вопросы статистического моделирования ФБД на компьютере, а также применение теории ФБД при статистическом моделировании процессов стохастической системы, описываемых линейным дифференциальным уравнением с возмущениями в виде ФБД.
70017. МЕТОДЫ СИНТЕЗА ПИРАЗОЛОИЗОХИНОЛИНОВ 259.94 KB
  Поскольку соответствующие агликоны обладают сравнительно низкой нуклеофильностью их непосредственное использование в условиях реакции Кенигса-Кнорра приводит к низким выходам. Использование фенолятанионами в качестве нуклеофильных агентов для получения...
70018. Детско-родительские отношения и их влияние на личность ребенка 138.18 KB
  Семья как фактор развития ребенка Практическое исследование влияния детско родительских отношений на личность ребенка Все больше и больше взрослых не задумываются о правильности воспитания своего ребенка что приводит чаще всего к неправильному формированию личности подростка.
70019. Учет расчетов с персоналом по оплате труда на примере ФГУП УЧХОЗ «Байкал» 143.17 KB
  Актуальность данной темы заключается в том, что учет расчетов по оплате труда является одним из важнейших участков бухгалтерского учета предприятия, значение учета расчетов с персоналом по оплате труда в системе управления предприятием очень велико, так как бухгалтерский учет оплаты труда...