21804

Оценка сложных систем в условиях риска на основе функции полезности

Лекция

Финансы и кредитные отношения

В этом случае целесообразно использовать аксиоматический подход к оценке систем на основе теории полезности. Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов . все компоненты векторного критерия на основе предпочтений ЛПР преобразуются в функции полезности компонентов и лишь затем осуществляется свертывание.

Русский

2013-08-03

105 KB

46 чел.

Лекция 8

Оценка сложных систем в условиях риска

на основе функции полезности

Решения, принимаемые в условиях риска, называются вероятностными. Однозначность соответствия между альтернативами и исходами в вероятностных операциях нарушается. Это означает, что каждой альтернативе  ставится в соответствие не один, а множество исходов  с известными условиями вероятностями их появления . Например, из-за ограниченности пропускной способности сетевого оборудования время передачи сообщения может меняться случайным образом по известному закону.

Очевидно, оценивать системы данного типа так, как в детерминированных операциях, нельзя.

В этом случае целесообразно использовать аксиоматический подход к оценке систем на основе теории полезности. Отличие данного подхода от других состоит в том, что свертывание векторного критерия в скалярный производится на основе аксиоматизации предпочтений ЛПР.

Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов .

Естественные отношения порядка на шкальных значениях критериев здесь не используются, т.к. все компоненты векторного критерия на основе предпочтений ЛПР преобразуются в функции полезности компонентов и лишь затем осуществляется свертывание.

В теории полезности исходят из того, что критерий эффективности предназначен для выявления предпочтений на альтернативах (исходах операций), что позволяет обеспечить обоснованный выбор решения.

При этом полезность исхода операции – это действительное число, приписываемое исходу операции, которое характеризует его предпочтительность по сравнению с другими альтернативами относительно цели.

Зная возможные альтернативы с их показателями полезности, можно построить функцию полезности, которая дает основу для сравнения и выбора решений.

Функция полезности представляет собой числовую функцию , определенную на множестве альтернатив , , так, что , когда альтернативы  и  неразличимы (); , когда альтернатива  предпочтительнее  ()

Примером построения  является функция, представленная на рисунке.

Рисунок 1 – Пример построения числовой функции

В теории полезности доказывается существование функции полезности, в которой предпочтения ЛПР формулируются в виде аксиом.

Основными аксиомами теории полезности является:

Аксиома 1 – измеримость,

Аксиома 2 – сравнимость,

Аксиома 3 – транзитивность,

Аксиома 4 – коммутативность,

Аксиома 5 – независимость.

Согласно теории полезности при выполнении в реальной задаче оценки систем всех пяти аксиом существует функция полезности, однозначно определенная на множестве всех альтернатив с точностью до монотонного строгого возрастающего линейного преобразования, т.е. полезность измеряется в шкале интервалов.

Процедура определения функции полезности включает в себя 3 этапа:

  •  выявление показателей исходов операции;
    •  определение множества допустимых исходов;
    •  определение показателей полезности исходов операции.

Определение полезности как меры оценки того или иного исхода операции представляет сложную задачу, точные методы решения которой пока не найдены. Все известные способы определения функции полезности носят приближенный характер. Такими способами являются экспертное оценивание и методы аппроксимации.

Определение функции полезности на основе аппроксимации заключается в следующем. При рассмотрении исходов конкретной операции отыскиваются характерные точки, соответствующие, например, экстремумам функции полезности, а неизвестные значения между ними определяются некоторой известной зависимостью. Вид аппроксимации выбирается на основе имеющихся сведений или качественных соображений о показателе полезности исходов. На практике применяются многоступенчатые и другие сложные функции полезности. Наиболее простыми аппроксимациями 1являются одноступенчатое, косинусоидальное и треугольное представлении функции полезности (см. рисунок).

Рисунок 2 – Представление аппроксимации полезности

1 – одноступенчатое, 2 – косинусоидальное, 3 – треугольное

Одноступенчатое представление функции полезности (1) может быть приемлемым для операций, в которых показателем исхода является срок выполнения работ. Например, подготовка презентации в ситуационном центре. В этом случае под исходами А понимается фактическое время готовности компьютерной презентации к работе. Очевидно, что полезность системы при  равна 1, а при  равна 0.

Косинусоидальное и треугольное представление функции полезности могут быть приемлемыми для операций, в которых показателями исхода является интервал времени, при этом функция полезности может быть представлена либо отрезком косинусоиды, либо треугольником.

Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов .

При исходах  с дискретными значениями показателей, каждый из которых появляется с условной вероятностью  и имеет полезность , выражение для определения математического ожидания функции полезности записывается в виде

.

При исходах с непрерывными значениями показателей математического ожидания функция полезности определяется как

где  – плотность вероятностей исходов;

– допустимая область векторного пространства исходов.

Критерий оптимальности для вероятностных операций имеет вид

в соответствии с этим критерием оптимальной системой в условиях риска считается система с максимальным значением мат. ожиданием функции полезности на множестве исходов операции.

Сведение задачи оценки систем в вероятностной постановке применимо для операций, имеющих массовый характер, для которых имеется вероятность определить объективные показатели исходов, вероятностные характеристики по параметрам обстановки и законы распределения вероятностей на множестве исходов операции.

Пример. Оценка вариантов конфигурации гетерогенной ЛВС общего пользования. Исследуемая операция – обмен сообщениями между пользователями, система – вариант размещения сетевого оборудования, показатель исхода операции – число переданных сообщений  (дискретная величина).

Данные для оценки сводятся в таблицу.

Вариант 1

60

40

20

0,3

0,5

0,2

0,8

0,5

0,1

0,51

Вариант 2

60

40

20

0,25

0,6

0,15

0,8

0,5

0,1

0,515

Расчеты показывают, что в качестве оптимальной системы должен быть признан вариант 2.

Кроме оптимизации «в среднем» в вероятностных операциях используются и другие критерии оценки систем:

  •  максимум вероятности случайного события;
    •  максимум степени вероятностной гарантии достижения результата не ниже требуемого уровня;
    •  максимум среднего квадрата уклонения результата от требуемого;
    •  минимум дисперсии результата;
    •  минимум среднего (байесовского) риска (минимум средних потерь).

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

1

0

1

2

3

  •  

 

А также другие работы, которые могут Вас заинтересовать

49800. Нахождение корней нелинейного уравнения 3.95 MB
  Блок-схемы реализующие численные методы -для метода дихотомии: Блок-схема для метода хорд: Блок-схема для метода Ньютона: Листинг программы unit Unit1; interfce uses Windows Messges SysUtils Vrints Clsses Grphics Controls Forms Dilogs TeEngine Series ExtCtrls TeeProcs Chrt Menus OleCtnrs StdCtrls xCtrls OleCtrls VCF1 Mth; type TForm1 = clssTForm GroupBox1: TGroupBox; OleContiner2: TOleContiner; MinMenu1: TMinMenu; N1: TMenuItem; Chrt1: TChrt; Series1:...
49801. Создание программы для новой базы данных на языке Pascal 118.13 KB
  Цель моей курсовой работы заключается в создании программы в которой можно: создавать новую базу данных открывать базу из файла сохранение базы в файл добавление записей удаление записей поиск записей по одному из полей вывод базы данных на экранб сортировка и вывод на экран. Исходя из целей постонавления задач мне необхадимо создать базуданных которая будет содержать всю информацию: 1 номер цеха. Программа должна выполнять следующие дополнительные функции: создание новой базы данных; открытие базы из файла; сохранение базы в файл;...
49803. Электроснабжение механического цеха 434.45 KB
  Расчет индивидуальных нагрузок Расчет индивидуальных нагрузок производится по следующим формулам: 1 Рр – расчетная активная мощность приёмника кВт; Рпасп – паспортная мощность приёмника кВт. Для станков работающих в повторнократковременном режиме: 2 Рр – расчетная активная мощность приёмника кВт; Рпасп – паспортная мощность приёмника кВт; ПВ – продолжительность включения. Для сварочного трансформатора: 3 Sр – расчетная полная мощность приёмника кВА; Sпасп – паспортная мощность...
49804. Разработка и исследование модели массового обслуживания 1005.63 KB
  Математический расчет параметров СМО Система массового обслуживания Система массового обслуживания СМО – это совокупность приборов каналов станков линий обслуживания на которые в случайные или детерминированные моменты времени поступают заявки на обслуживание. Оптимизация и оценка эффективности СМО состоит в нахождении средних суммарных затрат на обслуживание каждой заявки и нахождение средних суммарных потерь от заявок не обслуженных. СМО состоит из определенного числа обслуживающих каналов и предназначена для выполнения заявок с...
49805. Зворотне wavelet перетворення 989.5 KB
  Нехай нам даний змінний в часі сигнал. Іноді wavelet перетворення буде складатися з обчислення коефіцієнтів, які є добутками сигналу сімейства «Wavelet». В неперервному перетворенні wavelet, який відповідає масштабу і розміщенню в часі і записується так
49807. Програмування під Windows. Методичні вказівки 219 KB
  Первунінський МЕТОДИЧНІ ВКАЗІВКИ до виконання курсової роботи з дисципліни Програмування під Windows для студентів спеціальностей Методичні вказівки до виконання курсової роботи з навчальної дисципліни Програмування під Windows для студентів спеціальності Відповідальний за випуск: Затверджено Методичною радою Черкаського державного технологічного університету як методичні вказівки до виконання курсової роботи з навчальної дисципліни Програмування під Windows†для студентів спеціальності 8.