21804

Оценка сложных систем в условиях риска на основе функции полезности

Лекция

Финансы и кредитные отношения

В этом случае целесообразно использовать аксиоматический подход к оценке систем на основе теории полезности. Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов . все компоненты векторного критерия на основе предпочтений ЛПР преобразуются в функции полезности компонентов и лишь затем осуществляется свертывание.

Русский

2013-08-03

105 KB

58 чел.

Лекция 8

Оценка сложных систем в условиях риска

на основе функции полезности

Решения, принимаемые в условиях риска, называются вероятностными. Однозначность соответствия между альтернативами и исходами в вероятностных операциях нарушается. Это означает, что каждой альтернативе  ставится в соответствие не один, а множество исходов  с известными условиями вероятностями их появления . Например, из-за ограниченности пропускной способности сетевого оборудования время передачи сообщения может меняться случайным образом по известному закону.

Очевидно, оценивать системы данного типа так, как в детерминированных операциях, нельзя.

В этом случае целесообразно использовать аксиоматический подход к оценке систем на основе теории полезности. Отличие данного подхода от других состоит в том, что свертывание векторного критерия в скалярный производится на основе аксиоматизации предпочтений ЛПР.

Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов .

Естественные отношения порядка на шкальных значениях критериев здесь не используются, т.к. все компоненты векторного критерия на основе предпочтений ЛПР преобразуются в функции полезности компонентов и лишь затем осуществляется свертывание.

В теории полезности исходят из того, что критерий эффективности предназначен для выявления предпочтений на альтернативах (исходах операций), что позволяет обеспечить обоснованный выбор решения.

При этом полезность исхода операции – это действительное число, приписываемое исходу операции, которое характеризует его предпочтительность по сравнению с другими альтернативами относительно цели.

Зная возможные альтернативы с их показателями полезности, можно построить функцию полезности, которая дает основу для сравнения и выбора решений.

Функция полезности представляет собой числовую функцию , определенную на множестве альтернатив , , так, что , когда альтернативы  и  неразличимы (); , когда альтернатива  предпочтительнее  ()

Примером построения  является функция, представленная на рисунке.

Рисунок 1 – Пример построения числовой функции

В теории полезности доказывается существование функции полезности, в которой предпочтения ЛПР формулируются в виде аксиом.

Основными аксиомами теории полезности является:

Аксиома 1 – измеримость,

Аксиома 2 – сравнимость,

Аксиома 3 – транзитивность,

Аксиома 4 – коммутативность,

Аксиома 5 – независимость.

Согласно теории полезности при выполнении в реальной задаче оценки систем всех пяти аксиом существует функция полезности, однозначно определенная на множестве всех альтернатив с точностью до монотонного строгого возрастающего линейного преобразования, т.е. полезность измеряется в шкале интервалов.

Процедура определения функции полезности включает в себя 3 этапа:

  •  выявление показателей исходов операции;
    •  определение множества допустимых исходов;
    •  определение показателей полезности исходов операции.

Определение полезности как меры оценки того или иного исхода операции представляет сложную задачу, точные методы решения которой пока не найдены. Все известные способы определения функции полезности носят приближенный характер. Такими способами являются экспертное оценивание и методы аппроксимации.

Определение функции полезности на основе аппроксимации заключается в следующем. При рассмотрении исходов конкретной операции отыскиваются характерные точки, соответствующие, например, экстремумам функции полезности, а неизвестные значения между ними определяются некоторой известной зависимостью. Вид аппроксимации выбирается на основе имеющихся сведений или качественных соображений о показателе полезности исходов. На практике применяются многоступенчатые и другие сложные функции полезности. Наиболее простыми аппроксимациями 1являются одноступенчатое, косинусоидальное и треугольное представлении функции полезности (см. рисунок).

Рисунок 2 – Представление аппроксимации полезности

1 – одноступенчатое, 2 – косинусоидальное, 3 – треугольное

Одноступенчатое представление функции полезности (1) может быть приемлемым для операций, в которых показателем исхода является срок выполнения работ. Например, подготовка презентации в ситуационном центре. В этом случае под исходами А понимается фактическое время готовности компьютерной презентации к работе. Очевидно, что полезность системы при  равна 1, а при  равна 0.

Косинусоидальное и треугольное представление функции полезности могут быть приемлемыми для операций, в которых показателями исхода является интервал времени, при этом функция полезности может быть представлена либо отрезком косинусоиды, либо треугольником.

Эффективность систем в вероятностных операциях находится через математическое ожидание функции полезности на множестве исходов .

При исходах  с дискретными значениями показателей, каждый из которых появляется с условной вероятностью  и имеет полезность , выражение для определения математического ожидания функции полезности записывается в виде

.

При исходах с непрерывными значениями показателей математического ожидания функция полезности определяется как

где  – плотность вероятностей исходов;

– допустимая область векторного пространства исходов.

Критерий оптимальности для вероятностных операций имеет вид

в соответствии с этим критерием оптимальной системой в условиях риска считается система с максимальным значением мат. ожиданием функции полезности на множестве исходов операции.

Сведение задачи оценки систем в вероятностной постановке применимо для операций, имеющих массовый характер, для которых имеется вероятность определить объективные показатели исходов, вероятностные характеристики по параметрам обстановки и законы распределения вероятностей на множестве исходов операции.

Пример. Оценка вариантов конфигурации гетерогенной ЛВС общего пользования. Исследуемая операция – обмен сообщениями между пользователями, система – вариант размещения сетевого оборудования, показатель исхода операции – число переданных сообщений  (дискретная величина).

Данные для оценки сводятся в таблицу.

Вариант 1

60

40

20

0,3

0,5

0,2

0,8

0,5

0,1

0,51

Вариант 2

60

40

20

0,25

0,6

0,15

0,8

0,5

0,1

0,515

Расчеты показывают, что в качестве оптимальной системы должен быть признан вариант 2.

Кроме оптимизации «в среднем» в вероятностных операциях используются и другие критерии оценки систем:

  •  максимум вероятности случайного события;
    •  максимум степени вероятностной гарантии достижения результата не ниже требуемого уровня;
    •  максимум среднего квадрата уклонения результата от требуемого;
    •  минимум дисперсии результата;
    •  минимум среднего (байесовского) риска (минимум средних потерь).

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

EMBED Equation.3  

1

0

1

2

3

  •  

 

А также другие работы, которые могут Вас заинтересовать

62774. Правописание проверяемых и непроверяемых непроизносимых согласных, безударных гласных и парных согласных в корне слова 31.08 KB
  Цели: обучающая: учащиеся должны уметь называть орфограмму Проверяемые и непроверяемые непроизносимые согласные Безударные гласные Парные согласные в корне слова и находить их; учащиеся должны уметь называть орфограммы; уметь самостоятельно подбирать проверочные слова.
62776. Причастный оборот 26.97 KB
  Цель урока: закрепление понятия о причастном обороте, его роли в предложении, знакомство с правилами выделения причастного оборота запятыми.
62777. Перенос слов 15.6 KB
  Совершенствование умения выполнять звуко-буквенный анализ слова 3. Развитие умения слышать и видеть в словах опасные места орфограмму. Назовите буквы алфавита с которых не начинаются слова Мягкий знак твердый знак ы.
62778. Правила переноса слов 14.71 KB
  Актуализация изученного Прочитайте слова на доске Сосна ванна майка объявил Объясните орфограммы объясняют О ком эта загадка читает загадку о собаке Это о собаке Напишу слово собака на строке продолжает запись.
62779. Второстепенные члены предложения. Обстоятельства и дополнения 23.58 KB
  Давайте запишем это слово проговаривая его по слогам а говори вслух. Давайте придумаем предложение с этим словом. Дети говорят свои варианты У: Давайте запишем такие предложения...
62780. Главные члены двусоставного предложения. Подлежащее 16.34 KB
  Целеполагание. Определяют учащиеся, опираясь на тему урока. Работа со словарным словом: рябина. Устная проверка домашнего задания. Прочесть вслух 2–3 сочинения-описания архитектурного памятника по желанию учащихся.
62781. Правописание разделительного Ь в словах 25.01 KB
  Я буду задавать вам трудные вопросы и хочу услышать от вас умные четкие ответы.Я раздаю вам тесты вы отвечаете на них выбрав из предложенных правильный ответ. Отмечаются верные ответы.
62782. Состав слова. Обобщающий урок 16.84 KB
  Чтобы дать командам названия ответьте на вопросы: Какие части слова знаете Что такое приставка Что такое корень Что такое суффикс Что такое окончание Итак название 1 команды корень 2 суффикс 3 окончание. 1 команда: лечить лечение лекарство лекарь.