21813

ТЕОРИЯ МАТРИЧНЫХ ИГР. Примеры решения задач при парной игре с нулевой суммой

Лекция

Менеджмент, консалтинг и предпринимательство

В разных случаях числа aii могут иметь различный смысл выигрыш потери платеж. Игра это действительный или формальный конфликт в котором имеется по крайней мере два участника каждый из которых стремится к достижению собственных целей Правилами игры называют допустимые действия каждого из игроков направленные на достижение некоторой цели. Платежом называется количественная оценка результатов игры. если проигрыш одного игрока равен выигрышу другого.

Русский

2013-08-03

91 KB

100 чел.

ТЕМА 8. ТЕОРИЯ МАТРИЧНЫХ ИГР

Лекция 9

1. Постановка задачи выбора в условиях неопределенности

2.Основные определения и теоремы теории игр

3.Примеры решения задач при парной игре с нулевой суммой.

1. Постановка задачи выбора в условиях неопределенности

Ранее мы познакомились с задачами выбора решения, когда каждой альтернативе (варианту выбора) соответствовал определенный исход. Это был, таким образом, выбор в условиях определенности.

В реальных задачах часто приходится иметь дело с ситуацией, когда альтернатива неоднозначно определяет последствия сделанного выбора. Другими словами, имеется набор возможных исходов y  Y, из которых один окажется совмещенным с выбранной альтернативой, но с какой именно – в момент выбора неизвестно, но станет ясно только тогда, когда выбор уже сделан, и ничего изменить нельзя. Хотя с разной альтернативой x  X связано одно и то же множество исходов Y, для разных альтернатив разные исходы имеют неодинаковое значение.

1.1 Задание неопределенности с помощью матрицы

В случае дискретного набора альтернатив и исходов описанную выше стиуацию можно представить в виде матрицы

X,  Y

y1

y2

y3

yj

ym

x1

a11

a12

a13

a1i

a1m

x2

a21

a22

a23

a2i

a2m

xi

ai1

ai2

ai3

aii

aim

xn

an1

an2

an3

ani

anm

Вектор y = (y1,….ym) – это все возможные исходы. Числа aii выражают оценку ситуации, когда сделан выбор альтернативы хi и реализовался исход yi. В разных случаях числа aii могут иметь различный смысл (“выигрыш”, “потери”, “платеж”).

Возможны два варианта:

  1.  все строки ai = (ai1, …. aim) (т.е. мы видим, это тоже вектор) одинаковы и проблемы выбора между альтернативами нет;
  2.  строки различны, следовательно, возникает проблемв выбора альтернативы.

В случае непрерывных множеств X и Y ситуация описывается аналогично с помощью задаваемых на этих множествах функциях a (x,y), x  X, y  Y.

Мы несколько определились с ситуацией, однако всего этого пока недостаточно для формальной постановки задачи выбора. Реальные задачи могут быть самыми разными и требуют, соответственно, самых разных методов решения.

2.Основные определения и теоремы теории игр

Теория игр относится к разделу прикладной математики исследующей математические модели принятия решений в условиях конфликта, противоречий и неопределенности. Задачей теории игр является нахождение оптимальной стратегии поведения в условиях конфликта, неопределенности или противодействия какой то стороны в этой ситуации независимо от того сознательно или неосознанно это происходит. Игровые математические модели позволяют  не только найти оптимальную стратегию, которая не всегда однозначна, но и оценить каждый вариант решения с различных иногда противоречивых точек зрения, а так же глубже разобраться во всех сложностях и неопределенностях реальной ситуации для принятия до конца продуманного решения.

Началом теории игр как последовательной математической теории поведения можно считать выход в свет  50 лет назад монографии Дж. фон Неймана и О. Моргенштерна.  Французский математик Э. Мулен так характеризует значение теории игр для социально-экономических наук: «По нашему мнению, теория игр представляет собой набор инструментов для построения моделей в экономических и политических теориях. Единственным, но вполне достаточным оправданием существования теории игр служит её растущее применение в этих дисциплинах. Она является поистине неиссякаемым источником гибких концепций, каждая из которых проливает свет на определенные стороны социальных взаимоотношений.».

Вначале введем несколько фундаментальных понятия теории игр, после этого дадим определение этому разделу прикладной математики.

 Конфликт - это противоречие, вызванное противоположными интересами сторон.

 Конфликтная ситуация - ситуация в которой участвуют стороны интересы которых полностью или частично противоположны.

 Игра - это действительный или формальный конфликт, в котором имеется по крайней мере два участника, каждый из которых стремится к достижению собственных целей

 Правилами игры называют допустимые действия каждого из игроков, направленные на достижение некоторой цели.

 Платежом называется количественная оценка результатов игры.

 Парная игра - игра в которой участвуют только две стороны (два игрока).

 Игра с нулевой суммой - парная игра при которой сумма платежа равна нулю,  т. е. если проигрыш одного игрока, равен выигрышу другого.

 Стратегия игрока - это однозначный выбор игрока в каждой из возможных ситуаций, когда этот игрок должен сделать личный ход.

 Оптимальная стратегия - это такая стратегия игрока, которая при многократном повторении игры обеспечивает ему максимально возможный средний выигрыш или минимально возможный средний проигрыш.

Пусть мы имеем парную игру с нулевой суммой, один игрок может выбрать при данном ходе i -ю стратегию из m своих возможных (i=1..m), а второй, не зная выбора первого  j -ю стратегию из n своих возможных стратегий (j=1..n). В результате первый игрок выигрывает величину , а второй проигрывает эту величину. Из этих величин составим матрицу A.

                              A 

 Платежная матрица - так назовем матрицу A или еще по другому матрицей игры.

 Конечной игрой размерности (m  n) называется игра определенная матрицей А имеющей m строк и n столбцов.

Максимином или нижней ценой игры назавем число                                ,

а соответствующая ему стратегия (строка) максиминной.

 Минимаксом или верхней ценой игры назавем число

,

а соответствующая ему стратегия (столбец) минимаксной.

 Теорема 1.1. Нижняя цена игры всегда не превосходит верхнюю цену игры.

 Игрой с седловой точкой  называется игра для которой .

 Ценой игры называется величина , если .

В случае игры с седловой точкой , игрокам выгодно придерживатся максиминной и минимаксной стратегий и не выгодно отклонятся от них . В таких случаях про игру говорят, что в ней имеет место равновесие в чистых стратегиях.

Возможна игра и с несколькими седловыми точками. Тогда игра имеет несколько оптимальных решений, но с одинаковой ценой игры.

Чаще встречаются матричные игры без седловой точки, когда          и тогда для нахождения её решения используются смешанные стратегии.

 Смешанной стратегией игрока называется вектор, каждая из компонент которого показывает относительную частоту использования игроком соответствующей чистой стратегии.

 Теорема 1.2. Основная теорема теории матричных игр. Всякая матричная игра с нулевой суммой имеет решение в смешанных стратегиях.

 Теорема 1.3.  Если один из игроков применяет оптимальную смешанную стратегию, то его выигрыш равен цене игры в не зависимости от того, с какими частотами будет применять второй игрок свои стратегии (в том числе и чистые стратегии).

 2. Примеры решения задач при парной игре с нулевой суммой

   Задача 1.1.

Найти решение игры, заданной матрицей А

                         А=.

   

   Решение. Прежде всего проверим наличие седловой точки в данной матрице.

Для этого найдем нижнюю и верхнюю цену игры.

Минимальные элементы по строкам равны (2 и 3) тогда нижняя цена игры   = max (2; 3) = 3. Максимальные элементы по столбцам равны (3 и 6) тогда верхняя цена игры = min (3; 6) = 3. Отсюда видно, что = =3 и мы имеем седловую точку .= 3, т.е. задача имеет решение в чистых стратегиях.

Оптимальные чистые стратегии для первого и второго игроков равны соответственно U* = (0; 1),  Z* = (1; 0), а цена игры = 3.

   Задача 1.2.

Найти решение игры, заданной матрицей А

                         А=.

   Решение. Прежде всего проверим наличие седловой точки в данной матрице.

Для этого найдем нижнюю и верхнюю цену игры.

Минимальные элементы по строкам равны (2 и 3) тогда нижняя цена игры   = max (2; 3) = 3. Максимальные элементы по столбцам равны (4 и 6) тогда верхняя цена игры = min (4; 6) = 4. Отсюда видно, что    и мы имеем игру, которая имеет решение в смешанных стратегиях, а цена игры  .

Предположим, что для первого игрока смешанная стратегия задается вектором U = (u1; u2). Первый игрок, если придерживается своей оптимальной стратегии, независимо от стратегии второго игрока получает цену игры , т.е.

                       4u1* + 3u2* =                                     (1)

                       2u1* + 6u2* = .

 Кроме этого относительные частоты связаны условием:

                        u1* + u2* = 1.

Решаем полученную систему трех линейных уравнений с тремя неизвестными. Получим оптимальную стратегию первого игрока и цену игры:

U* = ( u1* ;  u2*) = (3/5; 2/5),   = 18/5.

Составим уравнения для нахождения оптимальной стратегии второго игрока, если при любой чистой стратегии первого, второй проигрывает цену игры:

                       4z1* + 2z2* = = 18/5                   (2)

                       3z1* + 6z2* = = 18/5.

Решаем полученную систему двух линейных уравнений с двумя неизвестными. Получим оптимальную стратегию второго игрока:

Z* = ( z1* ;  z2*) = (4/5; 1/5).

Рассмотрим геометрическую интерпретацию этой задачи в смешанных стратегиях.  Для этого в плоскости  введем систему координат и на горизонтальной оси Ou отложим вероятность применения первым игроком его двух стратегий, сумма этих вероятностей равна 1, поэтому весь график расположится на отрезке единичной длины. В точках 0 стратегия (1; 0), а в 1 стратегия (0; 1).

                                          Рисунок 1.

По оси ординат в точке 0 отложим выигрыши первого игрока по первой его стратегии при обеих стратегиях второго, а в точке 1 при второй стратегии первого игрока.  Соединим эти платежи по столбцам, тогда пересечение прямых дадут решение системы уравнений (1), а ордината этой точки цену игры .

Анологично можно построить график для нахождения оптимальной стратегии второго игрока.

Мы рассмотрели только самый простой вариант парной матричной игры с нулевой суммой, но она достаточно наглядно показывает, что иногда можно количественно оценить и выбрать оптимальный вариант поведения в конфликтной ситуации.


 

А также другие работы, которые могут Вас заинтересовать

25398. Система социальных служб для молодежи, ее специфика 49 KB
  Система социальных служб для молодежи ее специфика Молодежь это социальнодемографическая группа переживающая период становления социальной зрелости адаптации к миру взрослых и будущие изменения. К числу особо тревожных тенденций в молодежной среде относится отставание уровня образования от уровня достигнутого наиболее развитыми странами; ускорение падения престижа общего и профессиональнотехнического образования; увеличение числа молодежи начинающей трудовую деятельность с низким уровнем образования и не имеющей желания продолжать...
25399. Рынок труда, занятость и безработица: понятия, виды и основные характеристики 24.08 KB
  В научной литературе сложилось три подхода к определению рынка труда: В узком смысле рынок труда РТ это спрос и предложение рабочей силы которое за счет этих двух составляющих обеспечивает размещение рабочих мест. В рамках этого подхода раскрывается основа механизма рынка труда взаимодействия спроса и предложения. Это определение не учитывает такие аспекты как подготовка кадров мотивация труда и т.
25401. Технологии работы службы занятости 52.5 KB
  Технологии работы службы занятости. регистрация в целях поиска подходящей работы; 3. Кроме того граждане имеют право получить следующую информацию: о состоянии рынка труда; о наличии вакантных мест об оплате и других условиях труда с целью выбора работы; о возможностях профессиональной подготовки переподготовки повышения квалификации; о порядке и условиях регистрации в целях поиска подходящей работы регистрации и перерегистрации в качестве безработных; о правах и ответственности в области занятости населения и защиты от...
25402. Психосоциальная работа и ее роль в системе социальной работы. Основные психосоциальные технологии, используемые в деятельности специалиста по социальной работе 47.5 KB
  Психосоциальная работа и ее роль в системе социальной работы. на стыке социальной работы и практической психологии возникла новая отрасль психосоциальная работа задача которой преодоление социальной дезадаптации человека оздоровление межличностных отношений в профессиональной и семейнобытовой сферах. В центре внимания психосоциальной работы находится психика человека которая обобщенно понимается как система управления индивидуальной жизнью и поведением то есть жизнедеятельностью. Центральный тезис психосоциальной работы здоровая...
25403. Место, роль и виды педагогической деятельности в системе социальной работы 26.5 KB
  Место роль и виды педагогической деятельности в системе социальной работы. Содержание деятельности специалиста по социальной работе охватывает широкий круг вопросов от адресной помощи клиенту в преодолении трудных ситуаций восстановлении и сохранении физических и душевных сил до обучения социальным навыкам формирования умений самостоятельно решать проблемы ставить и достигать цели оказывать поддержку не только взрослым но и детям. Взаимосвязь педагогики и социальной работы поразному трактуется в отечественной и зарубежной литературе....
25404. Медико-социальная работа 44.5 KB
  Медикосоциальная работа принципиально изменяет характер комплексной помощи в сфере охраны здоровья предполагая системные медикосоциальные воздействия на более ранних этапах развития болезни и социальной дезадаптации являющихся потенциальными причинами тяжелых осложнений инвалидности и летального исхода. Цель медикосоциальной работы достижение максимально возможного уровня здоровья функционирования и адаптации лиц с физической и психической патологией а также неблагополучных в социальном плане. Объекты медикосоциальной работы ...
25406. Этнографические аспекты социальной работы 18.08 KB
  Этнографические аспекты социальной работы. В Российской Федерации проживают разные этнические группы отличающиеся не только по внешним признакам но и по многим другим особенностям: конфессиональной принадлежности менталитету языку обычаям традициям а следовательно и профессиональная среда социальной работы полиэтнична что требует от специалиста по социальной работе определенной подготовки а именно этнокультурной компетентности. Кроме того изучением этносов занимается этнология наука изучающая процессы формирования и развития...