21817

Реализация системного анализа при решении проблем техносферы. Краткая характеристика методов СА

Лекция

Менеджмент, консалтинг и предпринимательство

Показатели системы Методология системного анализа Постановка задачи Моделирование и анализ Оценка возможных вариантов решения краткая характеристика методов СА В последние годы методы СА стали широко использоваться для решения таких проблем окружающей среды и общества как:  загрязнение окружающей среды;  производственная безопасность;  транспортные потоки;  медицинское обслуживание;  образование;  криминалистика. Можно ли все это свести к определению одного параметра с помощью которого мы будем сравнивать возможные решения Вначале...

Русский

2013-08-03

111.5 KB

3 чел.

ТЕМА 3. реализация системного анализа при решении проблем техносферы

  1.  Краткая характеристика методов СА
  2.  Проблемы исследования сложных систем

2.1. Показатели системы

  1.  Методология системного анализа
    1.  Постановка задачи
    2.  Моделирование и анализ
    3.  Оценка возможных вариантов решения

  1.  краткая характеристика методов СА

В последние годы методы СА стали широко использоваться для решения таких проблем окружающей среды и общества как:

загрязнение окружающей среды;

производственная безопасность;

транспортные потоки;

медицинское обслуживание;

образование;

криминалистика.

По сути методы СА – это способы выбора одного варианта решения. Системный подход к решению проблем включает следующие этапы:

отыскание возможных вариантов решения;

определение последствий использования каждого из возможных вариантов решения;

применение объективных утверждений или критериев, которые указывают, является ли одно решение более предпочтительным, чем другие.

При этом не предполагается, что используемые способы выбора решения являются единственными или, что они не имеют определенностей.

Определение СА Квейда и Бучера:

«Системный подход помогает лицу, принимающему решение, выбрать последовательность действий путем общего изучения стоящей перед ним проблемы, определения цели, нахождения вариантов решения и сравнения последних под углом зрения соответствующих им результатов, причем для квалифицированного суждения об исследуемой проблеме используются по возможности аналитические зависимости".

Вот некоторые положения, которые желательно учитывать при системном подходе:

  1.  процесс принятия решения должен осуществляться таким образом, чтобы используемые способы выбора решений можно было бы оценить, улучшить или заменить на другие;
  2.  критерии оценки, используемые в процессе принятия решения, должны быть четко сформулированы;
  3.  усилия, затраченные на нахождение связей между причиной и следствием, могут быть в дальнейшем оправданы лучшим пониманием изучаемой проблемы.

2. трудности, связанные с исследованием сложных систем

Множество факторов. Для выбора одного варианта решений из многих исследователь пытается свести множество несопоставимых факторов к одному.

Например: проблема жилищного строительства включает в себя эстетику, условия обитания, стоимость, перспективы дальнейшего развития. Можно ли все это свести к определению одного параметра, с помощью которого мы будем сравнивать возможные решения? Вначале рассмотрим такое важное понятие как показатель системы.

2.1. Показатели системы

Как уже говорилось ранее, элементы системы и сама система обладают свойствами. теперь можно ввести понятие характеристики системы.

Характеристика – то, что отражает некоторое свойство элемента системы.

Характеристика задается кортежем yi = < name, {value}>  где name - имя  j-й характеристики, {value}  - область допустимых значений. Область допустимых значений задается перечислением этих значений или функционально, с помощью правил вычисления или измерения их оценки.

Характеристики подразделяются на количественные и качественные в зависимости от типа отношений на множестве их значений. Если эти отношения метрические, т.е. указывается не только факт выполнения отношения r(yi1, yi 2), но и степень количественного превосходства, то характеристика называется количественной. Например, высота стола, стула, размер экрана монитора, максимальное разрешение экрана являются количественными характеристиками, поскольку существуют шкалы измерений этих характеристик в сантиметрах и пикселах, и можно, например, сказать, что размер экрана 1-го монитора  yi 1  больше размера экрана 2-го монитора  yi 2  на 3 см. Количественная характеристика называется параметром.

Если пространство значений не метрическое, то характеристика называется качественной. Например, комфортность автоматизированного рабочего места – качественная характеристика.

Системы, как уже говорилось, обладают целью.

Цель – ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени.

Цель может задаваться требованиями к показателям результативности, трудоемкости, оперативности функционирования системы либо к траектории достижения заданного результата.

Показатель – это характеристика, отражающая качество j-й системы или целевую направленность процесса (операции), реализуемого   j-й системой).

Показатели делятся на:

а) частные показатели качества (эффективности) системы yi j, которые отражают i-е существенное свойство j-й системы;

б) обобщенные показатели качества (эффективности) системы Y j.

Различие между показателями качества и эффективности заключается в том, что показатель эффективности характеризует процесс и эффект от функционирования системы, а показатели качества – пригодность системы для ее использования по назначению.

Показатели качества отражают свойства самой системы. Эффективность системы обусловлена не только свойсвом системы, но и условиями окружающей среды (окружения системы).

В целом показатели могут быть поставлены в соответствие некоторым факторам, присущим системе.

Описание системы с помощью многих показателей заданных качественно или имеющих различные единицы измерения является векторной. Информация, относящаяся к системе, не может быть представлена как результат единственного измерения. Каждая компонента вектора будет меняться при замене одного возможного варианта другим.

Пример: негативные воздействия в системе «человек – среда обитания». Основными показателями здесь являются:

  1.  заболеваемость (А1);
  2.  детская смертность (А2);
  3.  медико-генетические нарушения (А3);
  4.  специфические и онкологические экологозависмые заболевания (А4);
  5.  снижение качества питьевой воды (В1);
  6.  радиоактивное загрязнение почв (В2);
  7.  химическое загрязнение почв (В3);
  8.  коллективная эффективная доза облучения (В4);
  9.  критические уровни (максимальные значения концентраций загрязняющих веществ (С1);
  10.  степень истощения водных ресурсов (С2);
  11.  степень деградации почв (С3);
  12.  степень загрязнения почв (С4);
  13.  степень деградации наземных экосистем (С5);
  14.  состояние растительности (С6);
  15.  состояние животного мира (С7);
  16.  изменения геологической среды Д1;
  17.  изменения биогеохимического состава среды Е.

Таким образом мы здесь имеем многомерный вектор R. Однако используемый при выборе решения термин «наиболее желательное решение» заключает в себе только один единственный фактор – желательность, - т.е. скалярное описание. таким образом необходима операция, преобразующая вектор скаляр, что также является одной из задач системного анализа.  Пример для трехмерного вектора - на рис.1.

Рис.1

Численное представление переменных.  Действительно, чтобы прооизвести операции над компонентами вектора и перевести его в скаляр, надо, чтобы все они были представлены в численном виде. Однако и при этом возникают трудности, например, как сопоставить такие несоизмери-мые показатели, как время и стоимость.  Численная оценка переменных, таким образом,  необходима в системном анализе, однако, простого решения здесь нет. Иногда обходят рассмотрение тех переменных, которые трудно представить в численном виде (например, эстетики). Не рассмотренные аспекты могут быть переданы другому лицу, принимающему решение. С другой стороны – в эстетике есть и измеримые характеристики (площадь открытого пространства, закон «золотого сечения» и т.п.).

Неопределенность исходных данных и решений. Эта трудность связана с неопределенностью исходных данных и решений. Виды неопределенностей, встречающихся при исследовании и моделировании систем, будут рассмотрены позднее. Вид и степень неопределенности исходных данных и принимаемых решений может быть различна. Здесь же в качестве примера рассмотрим формальную процедуру планирования. Любая формальная процедура планирования может оказаться неэффективной, если данные либо полностью отсутствуют, либо четко не определены и, наконец, если структура самой системы не имеет однозначного определения. Тогда встает вопрос о разумных способах учета неопределенностей.  В любом случае, задача планирования существенно осложняется.

3. методология системного планирования

Рассмотрим процесс разработки модели некоей системы, другими словами – планирование модели. Это может быть система образования, система медицинского обслуживания, обновление городов, развития транспортной сети и т.п.

Рис.2

В данном случае, рисунок 2 иллюстрирует разработку программы развития образования. Стрелками обозначаются потоки информации, прямоугольниками - операции, т.е. действия.

Цели операций обратной связи и управления - подтверждение логического соответствия каждой последующей операцией планирования с предыдущими и выдача указаний на внесение изменений в случае обнаружение несоответствий.

Рассмотрим отдельные операции.

Формулировка проблемы и рассмотрение отдельных принципов. Принцип может быть сформулирован следующим образом: все студенты должны иметь одинаковые условия получения образования.

Цели - каждый студент должен получать одинаковый объем информации.

Задачи – обеспечение всех одинаковыми пособиями и в одинаковом количестве, обеспечение педагогическими кадрами и т.п.

Требования  определяют разрыв между существующим состоянием дел и желаемой ситуацией. В данном случае это может быть качество учебных пособий, их новизна, количество и качество аудиторных занятий и т.п.

Условия. Операция «условия» - это описание взаимосвязей между переменными, которыми лицо, составляющее план, может управлять и которыми необходимо управлять. В данном случае, это «место» (район), финансовые возможности и т.п.

Разработка программы. Эта операция заключается в рассмотрении вариантов, которые могли бы быть использованы для решения поставленных задач, и в определении необходимых ресурсов.

Операция обратной связи и управления служат для подтверждения логического соответствия каждой последующей операции планирования (разработки с предыдущими) и выдачи указаний на внесение изменений в случае обнаружения несоответствий.

В качестве другого примера может служить разработка транспортной сети. Здесь начальная операция – описание условий (среды), в которой будет функционировать рассматриваемая транспортная сеть, с учетом возможных технологических и социальных изменений, а также различных вариантов распределения населения в будущем, т.е. в интервале времени, охватываемом планированием (например, на 30 лет).

Рис.3

Рассмотрим подробнее этап  "Разработка программы". В других случаях это может быть разработка технической системы и др. Здесь также можно выделить этапы (см. рис.3).

Этап "Постановка задачи" предусматривает определение целей предпринимаемой работы, рассмотрение возможностей и потребностей, перечисление возможных решений.

Этап "Моделирование и анализ" связывает входные и выходные данные изучаемой системы. Пусть, например, мы занимаемся задачей проектирования транспортной сети. Тогда входными данными могут быть:

  •  численность населения,
  •  рост экономики,
  •  развитие инфраструктуры

и.т.д.,

а выходными - влияние на природу и общество.

Стратегия действий, соответствующая каждому из возможных вариантов, оценивается путем сравнения выходных данных моделирования с целями планирования на этапе "оценка возможных вариантов решения".

Можно конкретизировать операции, выполняемые на этапе "постановка задачи":

  1.  формулирование целей разрабатываемой программы;
  2.  определение состояния дел и необходимой дополнительной информации;
  3.  определение входных, выходных и управляющих переменных системы;
  4.  перечисление возможных вариантов решения;
  5.  формирование представлений о структуре проблемы и о модели системы;
  6.  оценка будущих условий, включающая предсказание относительно переменных.

Разные исследователи могут давать несколько иные перечни этапов. Например, такой:

  1.  Формулирование проблемы.
    1.  Определение целей.
    2.  Сбор информации.
    3.  Разработка максимального количества альтернатив.
    4.  Отбор альтернатив.
    5.  Построение модели в виде уравнений (ММ), программ или сценария.
    6.  Оценка затрат.
    7.  Исследование чувствительности решения (параметрическое исследование).

Как видим, здесь много сходства, основные моменты практически те же.

Тем не менее, обычно не удается  построить модель всей системы в целом, либо это нецелесообразно из-за необходимости привлечения огромных вычислительных ресурсов. Поэтому при исследовании сложных систем прибегают к декомпозиции, или структурному разбиению системы.


 

А также другие работы, которые могут Вас заинтересовать

81514. Биосинтез дезоксирибонуклеотидов. Применение ингибиторов синтеза дезоксирибонуклеотидов для лечения злокачественных опухолей 178.43 KB
  Синтез дезоксирибонуклеотидов идёт с заметной скоростью только в тех клетках, которые вступают в S-фазу клеточного цикла и готовятся к синтезу ДНК и делению. В покоящихся клетках дезоксинуклеотиды практически отсутствуют. Все дезоксинуклеотиды, кроме тимидиловых, образуются из рибонуклеотидов путём прямого восстановления ОН-группы у второго углеродного атома рибозы в составе рибонуклеозиддифосфатов до дезоксирибозы
81515. Биосинтез ДНК, субстраты, источники энергии, матрица, ферменты. Понятие о репликативном комплексе. Этапы репликации 154.76 KB
  Этапы биосинтеза ДНК. Предложен ряд моделей механизма биосинтеза ДНК с участием указанных ранее ферментов и белковых факторов однако детали некоторых этапов этого синтеза еще не выяснены. Основываясь главным образом на данных полученных в опытах in vitro предполагают что условно механизм синтеза ДНК у Е.
81516. Синтез ДНК и фазы клеточного деления. Роль циклинов и циклинзависимых протеиназ в продвижении клетки по клеточному циклу 163.63 KB
  Роль циклинов и циклинзависимых протеиназ в продвижении клетки по клеточному циклу. Все фазы клеточного цикла G1 S G2 M могут различаться по длительности но в особенности это касается фазы G1 длительность которой может быть равна практически нулю или быть столь продолжительной что может казаться будто клетки вообще прекратили деление. В этом случае говорят что клетки находятся в состоянии покоя фаза G0. Клетки эпителия кишечника делятся на протяжении всей жизни человека но даже у этих быстропролиферирующих клеток подготовка к...
81517. Повреждение и репарация ДНК. Ферменты ДНК-репарирующего комплекса 137.99 KB
  Ферменты ДНКрепарирующего комплекса. Процесс позволяющий живым организмам восстанавливать повреждения возникающие в ДНК называют репарацией. Все репарационные механизмы основаны на том что ДНК двухцепочечная молекула т.
81518. Биосинтез РНК. РНК полимеразы. Понятие о мозаичной структуре генов, первичном транскрипте, посттранскрипционном процессинге 108.48 KB
  РНК полимеразы. В ходе процесса образуются молекулы мРНК служащие матрицей для синтеза белков а также транспортные рибосомальные и другие виды молекул РНК выполняющие структурные адапторные и каталитические функции Транскрипция у эукариотов происходит в ядре.принцип комплементарного спаривания оснований в молекуле РНК G ≡ C =U и Т=А.
81519. Биологический код, понятия, свойства кода, коллинеарность, сигналы терминации 105.17 KB
  Генетический код и его свойства Необходимость кодирования структуры белков в линейной последовательности нуклеотидов мРНК и ДНК продиктована тем что в ходе трансляции: нет соответствия между числом мономеров в матрице мРНК и продукте синтезируемом белке; отсутствует структурное сходство между мономерами РНК и белка. Отсюда становится ясным что должен существовать словарь позволяющий выяснить какая последовательность нуклеотидов мРНК обеспечивает включение в белок аминокислот в заданной последовательности. Он позволяет шифровать...
81520. Роль транспортных РНК в биосинтезе белков. Биосинтез аминоацил-т-РНК. Субстратная специфичность аминоацил-т-РНК-синтетаз 125.71 KB
  У человека около 50 различных тРНК обеспечивают включение аминокислот в белок. тРНК называют адапторные молекулы так как к акцепторному концу этих молекул может быть присоединена определённая аминокислота а с помощью антикодона они узнают специфический кодон на мРНК. В процессе синтеза белка на рибосоме связывание антикодонов тРНК с кодонами мРНК происходит по принципу комплементарности и антипараллельности.
81521. Последовательность событий на рибосоме при сборке полипептидной цепи. Функционирование полирибосом. Посттрансляционный процессинг белков 111.26 KB
  Каждая эукариотическая мРНК кодирует строение только одной полипептидной цепи т. она моноцистронна в отличие от прокариотических мРНК которые часто содержат информацию о нескольких пептидах т. Кроме того на полицистронных мРНК синтез белка начинается до того как заканчивается их собственный синтез так как процессы транскрипции и трансляции не разделены.
81522. Адаптивная регуляция генов у про- и эукариотов. Теория оперона. Функционирование оперонов 127.06 KB
  Регуляция активности генов у прокариотов. В экспериментах гипотеза оперона получила полное подтверждение а предложенный в ней тип регуляции стали называть контролем синтеза белка на уровне транскрипции так как в этом случае изменение скорости синтеза белков осуществляется за счёт изменения скорости транскрипции генов т. Согласно теории Жакоба и Моно оперонами называют участки молекулы ДНК которые содержат информацию о группе функционально взаимосвязанных структурных белков и регуляторную зону контролирующую транскрипцию этих генов.