21924

ЗАЩИТА КОРАБЛЯ

Лекция

Военное дело, НВП и гражданская оборона

ЛЕКЦИЯ: ЗАЩИТА КОРАБЛЯ. УЧЕБНЫЕ ВОПРОСЫ ОСНОВНАЯ ЧАСТЬ: Понятие о конструктивной защите и физических полях корабля. Основные физические поля корабля и способы их снижения. Размагничивающее устройство корабля.

Русский

2013-08-02

142 KB

92 чел.

20

КАМЧАТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ВОЕННОГО ОБУЧЕНИЯ

                                                                                                                                                                                                                    Экз. № 1

У Т В Е Р Ж Д А Ю

Начальник военно-морской кафедры № 2

капитан 1 ранга                     И. Ковалев

«___»_______________ 2004 года

Капитан 2 ранга БЕЛОВ О.А.

ЛЕКЦИЯ: «ЗАЩИТА КОРАБЛЯ».

ВУС-072302, 122101,   250200

Дисциплина ТП.02

Тема № 3

Занятие 3.1.

                                                                        

                                                                     Обсуждена на заседании ВМК № 2

«___»__________________2004 г.

Протокол №______

Петропавловск-Камчатский

2004


С О Д Е Р Ж А Н И Е:

ВВЕДЕНИЕ.

УЧЕБНЫЕ ВОПРОСЫ (ОСНОВНАЯ ЧАСТЬ):

  1.  Понятие о конструктивной защите и физических полях корабля.
  2.  Основные физические поля корабля и способы их снижения.
  3.  Размагничивающее устройство корабля.

ЗАКЛЮЧЕНИЕ.

ЛИТЕРАТУРА:

1.  УП «Физические поля корабля» Инв. № 210

 

         УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ:

1. НАГЛЯДНЫЕ ПОСОБИЯ:  стенд «Продольный разрез корабля»,

     устройство УРТ-850.

 

2. ТЕХНИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ: кодоскоп.

3. ПРИЛОЖЕНИЕ: слайды для кодоскопа.


В В Е Д Е Н И Е

В целях более успешного решения кораблем своих боевых задач в условиях интенсивного развития средств обнаружения и поражения, необходимо всему офицерскому составу знать физические поля корабля и Мирового океана, способы обеспечения физической защиты, уметь грамотно использовать технические средства защиты и режимы движения корабля, а также необходимо обратить серьезное внимание на выбор грамотных тактических приемов для обеспечения скрытности корабля и уменьшения вероятности обнаружения и поражения неконтактным оружием.

При проектировании и постройке кораблей различных классов уделяется большое внимание обеспечению их конструктивной защиты от воздействия различных видов оружия и средств наведения.

1. ПОНЯТИЕ О КОНСТРУКТИВНОЙ ЗАЩИТЕ И ФИЗИЧЕСКИХ      ПОЛЯХ КОРАБЛЯ.

С началом ведения боевых действий на море началось противостояние оружия, применяемого для уничтожения кораблей и защиты корабля от этого оружия.

Так в период, когда основным оружием был таран начали применять бронирование бортов корабля. С началом применения артиллерии значительное внимание наряду с бронированием уделялось пожарозащищенности кораблей. В этот период появились первые противопожарные системы.

Бронирование кораблей, как основной вид защиты широко применялся на кораблях вплоть до начала 20 века. В этот период существовал класс броненосных кораблей - броненосцев. Кроме того, другие корабли строились также с применением бронирования. Представителем этих кораблей является знаменитый крейсер "АВРОРА" построенный в этот период. Корпус данного корабля состоит из двух частей: тяжелой бронированной подводной части и легкой надводной.

С увеличением мощи артиллерийского оружия и появлением торпедного оружия бронирование перестало удовлетворять требованиям защиты корабля. Поэтому применение бронирования стало не целесообразным.

В этот период начинается бурное развитие основных положений живучести корабля, основоположником которых стал русский офицер, адмирал С.О. Макаров.

Применение принципа разделения корабля на герметичные, водонепроницаемые отсеки, широкое использование водоотливных и противопожарных средств, аварийно-спасательного имущества и материалов, а также научные подходы к организации борьбы за живучесть корабля, все это позволило кораблю эффективно противостоять боевому воздействию оружия того времени.

С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям. Данный вид защиты в настоящее время продолжает развиваться и совершенствоваться, а с появлением мощного ракетного оружия необходимость обеспечения защиты корабля еще более возросла.

На современных кораблях конструктивная защита обеспечивается проведением следующих мероприятий:

- придание кораблю необходимых запасов местной и общей прочности;

- деление корабля на водонепроницаемые отсеки;

- применение технических средств борьбы с водой и пожарами;

- обеспечение снижения уровня различных физических полей.

В настоящее время для обнаружения кораблей, их классификации, слежения за ними, а также их уничтожения используются различные неконтактные системы, основанные на принципах регистрации различных физических полей корабля. С началом применения неконтактных взрывателей и возникновением систем самонаведения основным направлением защиты кораблей стала защита по физическим полям.

Физическим полем называется часть пространства или все пространство, которому присущи некоторые физические свойства. В каждой точке этого пространства некоторая физическая величина имеет определенное значение.

К полям, как своеобразным формам материи можно отнести магнитное, тепловое (инфракрасное), световое, гравитационное и другие поля.

Некоторые физические поля являются своеобразными формами движения вещества, как, например акустическое поле. А некоторые поля проявляются в виде электромагнитных и гравитационных явлений в совокупности с движением вещества, как, например гидродинамическое поле.

Каждому месту Мирового океана присущи определенные уровни физических полей - это естественные природные поля. В зависимости от среды в которой зарождаются физические поля океана, их можно разделить на:

1. Геофизические поля, обусловленные наличием всей массы земли:

- магнитное поле;

- гравитационное поле;

- электрическое поле; поле рельефа океана.

2. Гидрофизические поля, обусловленные наличием водных масс океана, к которым относятся:

- поле температуры морской воды;

- поле солености морской воды;

- поле радиоактивности морской воды;

- гидродинамическое поле;

- гидроакустическое поле;

- гидрооптическое поле;

  •  поле теплового излучения поверхности океана.

При создании технических средств обнаружения кораблей и неконтактных систем оружия тщательно учитываются характеристики и параметры полей океана, они рассматриваются как естественная помеха, с учетом которой средства должны быть настроены так, чтобы выделить на фоне естественной помехи физическое поле корабля. С другой стороны, корабли могут использовать поля океана в целях маскировки или уменьшения уровней собственных полей.

Корабль (ПЛ) при нахождении в данном месте мирового океана вносит изменения в естественные поля. Он искажает (возмущает) то или иное поле Мирового океана с определенной закономерностью и сам в некоторых случаях подвергается воздействию физических полей, например, намагничивается.

Физическим полем корабля называется область пространства, прилегающая к кораблю, в пределах которой обнаруживается искажение соответствующего поля Мирового океана.

Надводный корабль является источником различных физических полей, которые являются  характеристиками корабля, определяющими его скрытность, защиту и боевую устойчивость.

Параметры физических полей широко используются при обнаружении и классификации кораблей, в системах наведения оружия, а также в системах управления неконтактным минно-торпедным и ракетным оружием.

В настоящее время еще не установлена строгая классификация и терминология по физическим полям и следности корабля. Одним из вариантов является классификация представленная на таблице №1.

Физические поля кораблей по месту расположения источников поля подразделяют на первичные (собственные) и вторичные (вызванные).

Первичными (собственными) полями кораблей называются поля, источники которых расположены непосредственно на корабле либо в сравнительно тонком слое воды, прилегающем к его корпусу.

Вторичным (вызванным), полем корабля, называется отраженное (искаженное) поле корабля, источники которого находятся вне корабля (в пространстве, на другом корабле и т.д.).

Поля, которые создаются искусственно с помощью специальных устройств, (радио-, гидролокационных станций, оптических приборов) называются активными физическими полями.

Поля, которые создаются естественно кораблем в целом как конструктивным сооружением, называются пассивными физическими полями корабля.

По функциональной зависимости параметров физических полей от времени их можно подразделить на статические и динамические.

Статическими полями являются такие физические поля, интенсивность (уровень или мощность) источников которых остается в течении времени воздействия полей на неконтактную систему постоянной.

Динамическими (переменными во времени) физическими полями называются такие поля, интенсивность источников которых изменяется в течении времени воздействия поля на неконтактную систему.

Физические поля корабля в настоящее время широко исрользуются по трем направлениям:

- в неконтактных системах различных видов оружия;

- в системах обнаружения и классификации;

- в системах самонаведения.

Степень использования физических полей в технических средствах обнаружения, слежения за кораблями и в неконтактных системах оружия неодинакова. В настоящее время нашли широкое применение в практике следующие физические поля корабля:

  •  акустическое поле,
  •  тепловое (инфракрасное) поле,
  •  гидродинамическое поле,
  •  магнитное поле,
  •  электрическое поле.

Причины возникновения и способы снижения этих физических полей корабля  рассмотрим в следующих вопросах занятия.

2. ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПОЛЯ КОРАБЛЯ И СПОСОБЫ ИХ СНИЖЕНИЯ.

а) Акустическое поле корабля.

Акустическим полем корабля  называется область пространства, в которой распределяются акустические волны, образованные или собственно кораблем или отражающиеся от корабля.

Волнообразно распространяющееся колебательное движение частиц упругой среды принято называть звуком.

Скорость распространения звука зависит от упругих свойств среды (в воздухе 330 м/сек, в воде 1500 м/сек, в стали около 5000 м/сек). Скорость распространения звука в воде зависит, кроме того, от ее физического состояния, увеличиваясь с повышением температуры, солености и гидростатического давления.

Движущийся корабль является мощным источником звука, создающим в воде акустическое поле большой интенсивности. Это поле называют гидроакустическим полем корабля (ГАПК).

В соответствии с классификацией рассмотренной ранее, ГАПК подразделяется на:

- первичное ГАПК (шумность), которое формируется кораблем собственным источником акустических волн;

- вторичное ГАПК (гидролакационное), которое формируется в следствии отражающихся от корабля акустических волн излучаемых посторонним источником.

Гидроакустическое поле (шумность) корабля широко используется в стационарных, корабельных и авиационных системах обнаружения и классификации,  а также системах самонаведения  и  неконтактных  взрывателях минно-торпедного оружия.

Гидроакустическое поле корабля представляет собой совокупность наложенных друг на друга полей, создаваемых различными источниками, основными из которых являются:

  1.  Шумы, создаваемые движителями (винтами) при их вращении. Подводный шум корабля от работ гребных винтов разделяется на следующие составляющие:

- шум вращение гребного винта,

- вихревой шум,

- шум вибрации кромок лопастей винтов («пение»),

- кавитационный шум.

  1.  Шумы, излучаемые корпусом корабля на ходу и на стоянке как результат его  вибрации от работы механизмов.
  2.  Шумы, создаваемые обтеканием корпуса корабля водой при его движении.

Уровни подводного шума зависят от скорости хода корабля и от глубины погружения (для ПЛ). На скоростях хода выше критической начинается область интенсивного шумообразования.  

В процессе эксплуатации корабля шумность его по ряду причин может измениться. Так увеличению шумности способствует выработка технического ресурса корабельных механизмов, что приводит к их расцентровки, расбалансировки и увеличению вибрации. Колебательная энергия механизмов вызывает вибрации корпуса, что приводит к возмущениям в забортной среде, определяющим подводный шум.

Вибрации механизмов передаются на корпус:

-  через опорные связи механизмов с корпусом (фундаменты);

- через неопорные связи механизмов с корпусом (трубопроводы, водопроводы, кабели);

-  через воздух в отсеках и помещениях НК.

Насосы, связанные с забортной средой, передают колебательную энергию кроме указанных путей по рабочей среде трубопровода непосредственно в воду.

Шумность корабля характеризует не только его скрытность от гидроакустических средств обнаружения и степень защиты от минно-торпедного оружия вероятного противника, но и определяет условия работы собственных гидроакустических средств обнаружения и целеуказания, создавая помехи работе этих средств.

Шумность имеет большое значение для подводных лодок (ПЛ) так как она во многом определяет их скрытность. Контроль за шумностью и ее снижение является важнейшей задачей всего личного состава корабля и особенно ПЛ.

В целях обеспечения акустической защиты корабля проводится ряд организационно-технических и тактических мероприятий.

К данным мероприятиям относятся следующие:

  •  улучшение виброакустических характеристик механизмов;
  •  удаление механизмов от конструкций наружного корпуса, излучающего подводный шум, путём их установки на палубы, платформы и переборки;
  •  виброизоляция механизмов и систем от основного корпуса с помощью звукоизолирующих амортизаторов, гибких вставок, муфт, амортизирующих подвесок трубопроводов и специальных шумозащищающих фундаментов;
  •  вибропоглащение и звукоизоляция звуковых вибраций фундаментных и корпусных конструкций, систем трубопроводов с помощью звукоизолирующих и вибродемфирующих покрытий;
  •  звукоизоляция и звукопоглащение воздушного шума механизмов за счет применения покрытий, кожухов, экранов, глушителей в воздуховодах;
  •  применение в системах забортной воды глушителей гидродинамического шума.

Кавитационный шум снижается  выполнением следующих мероприятий:

  •  применение малошумных гребных винтов;
  •  применение низкооборотных винтов;
  •  увеличение числа лопастей;
  •  балансировка гребного винта и линии вала.

Совокупность конструктивных мероприятий и действий личного состава направленных на снижение шумности, позволяют в значительной степени снизить уровень гидроакустического поля корабля.

б) Тепловое поле корабля.

Основными источниками теплового поля корабля (инфракрасного излучения) являются:

  •  поверхности надводной части корпуса, надстроек, палуб, кожухов дымовых труб;
  •  поверхности газоходов и газовыхлопных устройств отработавших газов;
  •  газовый факел;
  •  поверхности  корабельных  конструкций (мачт, антенн, палуб и т.д.), находящихся в зоне действия газового факела, газовых струй ракет и летательных аппаратов при запуске;
  •  бурун и кильваторный след корабля.

Обнаружение надводных кораблей и подводных лодок по их тепловому полю и выдача целеуказания оружию производится с помощью теплопеленгаторной аппаратуры. Такая аппаратура устанавливается на самолетах, спутниках, надводных кораблях и подводных лодках, береговых постах.

Тепловыми (инфракрасными) устройствами самонаведения снабжаются также различные типы ракет и торпеды. Современные тепловые устройства самонаведения обеспечивают захват целей на расстоянии до 30 км.

Наиболее эффективным способом снижения теплового поля корабля является применение технических средств тепловой защиты.

К техническим средствам тепловой защиты относятся:

  •  охладители отработавших газов корабельной энергетической установки (камера смешения, внешний кожух, жалюзийные окна приёма воздуха, насадки, системы водовпрыска и т.д.);
  •  теплоутилизационные контуры (ТУК) корабельной энергетической установки;
  •  бортовые (надводные и подводные) и кормовые газовыхлопные устройства;
  •  экраны инфракрасного излучения от внутренних и наружных поверхностей газоходов (двухслойные экраны, профильные экраны с водяным или воздушным охлаждением, экранирующие тела и т.д.);
  •  система универсальной водяной защиты;
  •  покрытия для корпуса и надстроек корабля, в том числе и лакокрасочные, с пониженной излучающей способностью;
  •  тепловая изоляция высокотемпературных корабельных помещений.

Тепловую заметность надводного корабля можно также уменьшить применением тактических приемов. К таким приемам относятся следующие:

  •  использование маскирующего воздействия тумана, дождя и снега;
  •  использование в качестве фона предметов и явлений с мощным инфракрасным излучением;
  •  использование носовых курсовых углов по отношению к носителю теплопеленгаторной аппаратуры.

Тепловая заметность подводных лодок уменьшается при увеличении глубины их погружения.

в) Гидродинамическое поле корабля.

Гидродинамическим полем корабля (ГПК) называется область пространства, прилегающая к кораблю, в которой наблюдается изменение гидростатического давления, вызываемое движением корабля.

По физической сущности ГПК это возмущение движущимся кораблем естественного гидродинамического поля Мирового океана.

Если в каждом месте Мирового океана параметры его гидродинамического поля обусловлены в наибольшей степени случайными явлениями, учесть которые заранее очень трудно, то движущийся корабль вносит не случайные, а вполне закономерные изменения в эти параметры, учесть которые можно с необходимой для практики точностью.

При движении корабля в воде частицы жидкости, расположенные на определенных расстояниях от его корпуса, приходят в состояние возмущенного движения. При движении этих частиц меняется величина гидростатического давления в месте движения корабля, образуется гидродинамическое поле корабля определенных параметров.

При движении ПЛ под водой область изменения давления распространяется на поверхность воды так же, как и на грунт. Если движение осуществляется на небольших глубинах погружения, то на поверхности воды появляется визуально хорошо заметный  волновой гидродинамический след.

Таким образом, гидродинамическое поле корабля создается при его движении относительно окружающей жидкости и зависит от водоизмещения, главных размерений, формы корпуса, скорости корабля, а также от глубины моря (расстояние до днища корабля).

Гидродинамическое поле корабля (ГПК) широко используется в неконтактных гидродинамических взрывателях донных мин.

Обеспечить гидродинамическую защиту корабля любого типа или существенным образом снизить параметры ГПК с помощью конструктивных средств очень трудно. Для этого необходимо создавать сложную форму корпуса, что приведет к увеличению сопротивления движению. Поэтому решение вопроса гидродинамической защиты осуществляется в основном организационными мероприятиями.

Для обеспечения гидродинамической защиты любого корабля необходимо и достаточно, чтобы параметры его ГПК по величине не превосходили параметров настройки неконтактного гидродинамического взрывателя.

Уровни гидродинамического поля уменьшаются при уменьшении скорости корабля. Снижение скорости корабля до безопасной является основным способом защиты кораблей от гидродинамических мин.

Графики безопасных скоростей корабля и правила пользования ими даются в инструкции по выбору безопасных скоростей корабля при плавании в районах возможной постановки гидродинамических мин.

Наряду с эксплуатационными физическими полями корабля, существуют также поля зависящие практически только от физических и химических свойств материалов из которых построен корабль. К таким физическим полям корабля относятся магнитное и электрическое поле.  

г) Электрическое поле корабля.

Следующим физическим полем корабля является электрическое поле. Из курса физики известно,  что если в какой-либо точке пространства появляется электрический заряд, то вокруг этого заряда возникает электрическое поле.

Электрическим полем корабля (ЭПК) называют область пространства, в которой протекают постоянные электрические токи.

Основными причинами образования электрического поля корабля являются:

  1.  Электрохимические процессы между деталями, изготовленными из разнородных металлов и находящимися в подводной части корабля (гребные винты и валы, рулевые устройства, донно-забортная арматура, системы протекторной и катодной защиты корпуса и т.д.).
  2.  Процессы, обусловленные явлением электромагнитной индукции, которые заключаются в том, что корпус корабля при своем движении пересекает силовые линии магнитного поля Земли, в результате чего в корпусе корабля и близлежащих массах воды возникают электрические токи. Аналогично такие токи появляются в корабельных винтах при их вращении в МПЗ и МПК.
  3.  Процессы, связанные с утечкой токов корабельного электрооборудования на корпус корабля и в воду.

Основной причиной образования ЭПК являются электрохимические процессы между разнородными металлами. Около 99 % от максимальной величины ЭПК приходится именно на электрохимические процессы. Поэтому для снижения уровня ЭПК стремятся устранить эту причину.  

Электрическое поле корабля значительно превосходит естественное электрическое поле Мирового океана, что позволяет использовать его для создания неконтактного морского оружия и средств обнаружения подводных лодок.

С целью снижения электрического поля корабля проводится ряд мероприятий, основными из которых являются следующие:

  •  применение неметаллических материалов для изготовления корпуса и деталей, омываемых морской водой;
  •  подбор металлов по близости значений их электродных потенциалов для корпуса и деталей, омываемых морской водой;
  •  экранирование источников ЭПК;
  •  разъединение внутренней электрической цепи источников ЭПК;
  •  покрытие источников ЭПК электроизолирующими материалами.

г) Магнитное поле корабля.

Магнитным полем корабля (МПК) называется область пространства, в котором естественное магнитное поле Земли искажено из-за присутствия или движения корабля, намагниченного в поле земли.

Магнитное поле корабля (МПК) широко используется в неконтактных взрывателях минно-торпедного оружия, а также в стационарных и авиационных системах магнитометрического обнаружения ПЛ.

Причины возникновения магнитного поля корабля заключаются в следующем. Любое вещество всегда магнитно, т.е. изменяет свои свойства в магнитном поле, но степень изменения свойств, для различных веществ не одинакова.

Различают слабомагнитные вещества, (например алюминий, медь, титан, вода), и сильномагнитные, (такие как  железо, никель, кобальт и некоторые сплавы). Вещества, способные сильно намагничиваться, получили название ферромагнетиков.

Для количественной характеристики магнитного поля служит специальная физическая величина – напряженность магнитного поля Н.

Другой важной физической величиной, характеризующей в первую очередь магнитные свойства материала является интенсивность намагничивания I.  Кроме  того существуют понятия остаточного намагничивания  и  индуктивного намагничивания.

Остаточным намагничиванием называется постоянное намагничивание корабля, которое сохраняется на достаточно длительный промежуток времени неизменным при изменении или отсутствии МПЗ.

Индуктивным намагничиванием корабля называется величина, которая непрерывно и пропорционально изменяется при изменении МПЗ.

Корабль, корпус которого построен из ферромагнитного материала, или имеющий другие ферромагнитные массы (главные двигатели, котлы, и т.д.) находясь в магнитном поле Земли намагничивается, т.е. приобретает собственное магнитное поле.

Магнитное поле корабля в основном зависит от магнитных свойств материалов, из которых построен корабль, технологии постройки, размеров и распределения ферромагнитных масс, места постройки и районов плавания, курса, качки и некоторых других факторов.

Способы снижения магнитного поля корабля рассмотрим более подробно в следующем вопросе занятия.

3. РАЗМАГНИЧИВАЮЩЕЕ УСТРОЙСТВО КОРАБЛЯ.

Задача снижения магнитного поля корабля может решаться двумя путями:

  •  применение в конструкции корпуса, оборудования и механизмов корабля маломагнитных материалов;
  •  проведение размагничивания корабля.

Применения маломагнитных и немагнитных материалов для создания корабельных конструкций позволяет в значительной степени снизить магнитное поле корабля. Поэтому при строительстве специальных кораблей (тральщиков, минных заградителей) широко используются такие материалы как стеклопластик, пластмассы, алюминиевые сплавы и т.д. При строительстве некоторых проектов атомных подводных лодок применяется титан и его сплавы, который наряду с высокой прочностью является маломагнитным материалом.

Однако прочность и другие механические и экономические показатели маломагнитных материалов позволяют применять их при строительстве боевых кораблей  в ограниченных пределах.

Кроме того, если даже корпусные конструкции кораблей выполнять из маломагнитных материалов, то целый ряд корабельных механизмов остается выполненным из ферромагнитных металлов, которые также создают магнитное поле. Поэтому в настоящее время основным способом магнитной защиты большинства кораблей является их размагничивание.

Размагничиванием корабля называется комплекс мероприятий направленных на искусственное уменьшение составляющих напряженности его магнитного поля.

Основными задачами размагничивания являются:

а) уменьшение всех составляющих напряженности МПК до пределов, установленных специальными нормами;

б) обеспечение стабильности размагниченного состояния корабля.

Одним из методов решения этих задач является проведение обмоточного размагничивания.

Сущность метода обмоточного размагничивания заключается в том, что МПК компенсируется магнитным полем тока специально смонтированных на корабле штатных обмоток.

Совокупность системы обмоток, источников их питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля.

В систему обмоток РУ корабля могут входить следующие обмотки (в зависимости от типа и класса корабля):

а) Основная горизонтальная обмотка (ОГ), предназначенная для компенсации вертикальной составляющей МПК. Для размагничивания большей массы ферромагнитного материала корпуса ОГ разбивается на ярусы, при этом каждый ярус состоит из нескольких секций.

б) Курсовая шпангоутная обмотка (КШ), предназначенная для компенсации продольного индуктивного намагничивания корабля. Она состоит из ряда последовательно соединенных витков, расположенных в шпангоутных плоскостях.

а) Основная горизонтальная обмотка ОГ.

б) Курсовая шпангоутная обмотка КШ.

в) Курсовая батоксовая обмотка КБ.

в) Курсовая батоксовая обмотка (КБ), предназначенная для компенсации поля индуктивного поперечного намагничивания корабля. Она монтируется в виде нескольких контуров, расположенных побортно в батоксовых плоскостях, симметрично относительно диаметральной плоскости корабля.

г) Постоянные обмотки, применяются на кораблях большого водоизмещения. К этим видам обмоток относятся постоянная шпангоутная обмотка (ПШ) и постоянная батоксовая обмотка (ПБ). Эти обмотки прокладываются по трассе обмоток КШ и КБ и никаких видов регулирования тока в процессе эксплуатации не имеют.

д) Специальные обмотки (СО), предназначенные для компенсации магнитных полей от отдельных крупных ферромагнитных масс и мощных электрических установок (контейнеры с ракетами, тральные агрегаты, аккумуляторные батареи и т.д.)

Питание обмоток РУ осуществляется только постоянным током от специальных агрегатов питания РУ. Агрегатами питания РУ являются электромашинные преобразователи, состоящие из приводного двигателя переменного тока и генератора постоянного тока.

Для питания преобразователей и обмоток РУ на кораблях устанавливаются специальные щиты питания РУ, получающие питание от двух источников тока, расположенных на разных бортах. На щитах РУ устанавливается необходимая коммутационная, защитная, измерительная и сигнальная аппаратура.

Для автоматического управления токами в обмотках РУ устанавливается специальная аппаратура, которая производит регулировку токов в обмотках РУ в зависимости от магнитного курса корабля. В настоящее время на кораблях используются регуляторы тока типа «КАДР-М» и «КАДМИЙ».

Наряду с обмоточным размагничиванием, т.е. использованием РУ,  надводные корабли и подводные лодки периодически подвергаются безобмоточному  размагничиванию.

Сущность безобмоточного размагничивания заключается в том, что корабль подвергается кратковременному воздействию сильных, искусственно созданных магнитных полей, уменьшающих МПК до определенных норм. Сам корабль при этом методе никаких стационарных размагничивающих обмоток не имеет. Безобмоточное размагничивание производится на специальных стендах СБР (стенд безобмоточного размагничивания).

Основными недостатками метода безобмоточного размагничивания являются недостаточная стабильность размагниченного состояния корабля, невозможность компенсации индуктивных составляющих МПК, зависящих от курса и длительность процесса безобмоточного размагничивания.

Таким образом, максимальное снижение магнитного поля корабля достигается путем применения двух методов размагничивания – обмоточного и безобмоточного. Применение РУ позволяет скомпенсировать МПК в процессе эксплуатации, но так как магнитное поле корабля с течением времени может значительно изменяться, то корабли нуждаются в периодической магнитной обработке на СБР. Кроме того на СБР производятся замеры величины магнитного поля корабля, с целью поддержания МПК в установленных приделах.

ЗАКЛЮЧЕНИЕ

Таким образом, рассмотренные физические поля корабля связаны непосредственно с его эксплуатацией. На использовании этих физических полей построены различные системы обнаружения кораблей и ПЛ, системы наведения оружия, а также неконтактные взрыватели минно-торпедного оружия.

В связи с этим, снижение уровней физических полей корабля и поддержание их в допустимых пределах, является важной задачей всего экипажа корабля.

Обнаружение корабля любыми средствами наблюдения, а также срабатывание неконтактных систем самонаведения и взрывателей оружия происходит тогда, когда интенсивность поля корабля превысит порог чувствительности указанных средств.

Существует несколько принципиально различных способов уменьшения вероятности обнаружения и поражения кораблей боевыми средствами и неконтактными системами. Сущность их сводится к следующему:

1. Использовать маскирующие особенности полей Мирового океана, особенности водной или воздушной среды, тактические приемы с таким расчетом, чтобы по возможности наблюдая за противником, обеспечить на определенном расстоянии собственную скрытность и наименьшую вероятность поражения неконтактным оружием.

2. Снизить интенсивность источников физического поля корабля с помощью конструктивных и организационных мероприятий. Этот способ называют обеспечением физической защиты корабля.

Защищенность корабля от обнаружения и воздействия различных видов оружия в значительной степени влияют на боеспособность корабля и на эффективное выполнение стоящих перед кораблем задач. Чем лучше обеспечена защита корабля, тем меньше вероятность получения им различных повреждений.

Если же корабль все же получает повреждения от воздействия оружия противника (или аварийные повреждения) то он должен обладать способностью противостоять этим повреждениям и восстанавливать свою боеспособность. Таким качеством является живучесть корабля.

Данное качество будет рассмотрено на следующем занятии.

Старший преподаватель ВМК № 2

капитан 2 ранга                                   О. Белов

«___» ____________ 2004 г.

КУРСОВАЯ  ШПАНГОУТНАЯ  ОБМОТКА  КШ

НИЖНИЙ  ЯРУС  ОГ

СЕКЦИИ  НИЖНЕГО  ЯРУСА  ОГ

СЕКЦИИ ВЕРХНЕГО ЯРУСА   ОГ

ВЕРХНИЙ   ЯРУС  ОГ

УРСОВАЯ  БАТОКСОВАЯ   ОБМОТКА  КБ


 

А также другие работы, которые могут Вас заинтересовать

18176. ЕКОНОМІКО-ПРАВОВИЙ МЕХАНІЗМ У ГАЛУЗІ ВИКОРИСТАННЯ, ОХОРОНИ ТА ВІДТВОРЕННЯ ЗЕМЕЛЬ 68 KB
  Лекція 17 ЕКОНОМІКОПРАВОВИЙ МЕХАНІЗМ У ГАЛУЗІ ВИКОРИСТАННЯ ОХОРОНИ ТА ВІДТВОРЕННЯ ЗЕМЕЛЬ План: Поняття та загальна характеристика економікоправового механізму у галузі використання охорони та відтворення земель Правове регулювання плати за землю. Загальн...
18177. ЮРИДИЧНА ВІДПОВІДАЛЬНІСТЬ ЗА ЗЕМЕЛЬНІ ПРАВОПОРУШЕННЯ 87 KB
  Лекція 21. ЮРИДИЧНА ВІДПОВІДАЛЬНІСТЬ ЗА ЗЕМЕЛЬНІ ПРАВОПОРУШЕННЯ План: Поняття та види юридичної відповідальності за земельні правопорушення Кримінальна відповідальність за злочини у галузі земельних відносин Майнова відповідальність за порушення зем
18178. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ СІЛЬСЬКОГОСПОДАРСЬКОГО ПРИЗНАЧЕННЯ 71.5 KB
  Лекція 22 ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ СІЛЬСЬКОГОСПОДАРСЬКОГО ПРИЗНАЧЕННЯ План: Поняття земель сільськогосподарського призначення Склад земель сільськогосподарського призначення Особливості правового режиму земель сільськогосподарського призначеня Особ
18179. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ НАСЕЛЕНИХ ПУНКТІВ 77 KB
  Лекція 23 ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ НАСЕЛЕНИХ ПУНКТІВ План: Поняття земель населених пунктів Склад земель населених пунктів Особливості правового режиму земель населених пунктів Особливості управління в сфері використання і охорони земель населених пункт...
18180. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ПРИРОДНО-ЗАПОВІДНОГО ФОНДУ ТА ІНШОГО ПРИРОДООХОРОННОГО ПРИЗНАЧЕННЯ, РЕКРЕАЦІЙНОГО, ОЗДОРОВЧОГО, ІСТОРИКО-КУЛЬТУРНОГО ПРИЗНАЧЕННЯ 81 KB
  Лекція 24 ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ПРИРОДНОЗАПОВІДНОГО ФОНДУ ТА ІНШОГО ПРИРОДООХОРОННОГО ПРИЗНАЧЕННЯ РЕКРЕАЦІЙНОГО ОЗДОРОВЧОГО ІСТОРИКОКУЛЬТУРНОГО ПРИЗНАЧЕННЯ План: Поняття склад та особливості правового режиму земель природнозаповідного фонду Понятт...
18181. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ЛІСОГОСПОДАРСЬКОГО ПРИЗНАЧЕННЯ 76 KB
  Лекція 25 ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ЛІСОГОСПОДАРСЬКОГО ПРИЗНАЧЕННЯ План: Поняття та склад земель лісогосподарського призначення їх співвідношення з понятям ліс Відмежування земель лісового фонду від земельних ділянок під нелісовими насадженнями Склад ...
18182. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ВОДНОГО ФОНДУ 79 KB
  Лекція 26 ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ВОДНОГО ФОНДУ План: Поняття та склад земель водного фонду Дозвільний порядок на проведення робіт на землях водного фонду Правовий режим окремих різновидів земель водного фонду Правові форми використання земель водно
18183. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ПРОМИСЛОВОСТІ, ТРАНСПОРТУ, ЗВЯЗКУ, ЕНЕРГЕТИКИ, ОБОРОНИ ТА ІНШОГО ПРИЗНАЧЕННЯ 87.5 KB
  Лекція 27. ПРАВОВИЙ РЕЖИМ ЗЕМЕЛЬ ПРОМИСЛОВОСТІ ТРАНСПОРТУ ЗВ'ЯЗКУ ЕНЕРГЕТИКИ ОБОРОНИ ТА ІНШОГО ПРИЗНАЧЕННЯ План: Поняття земель промисловості транспорту зв’язку енергетики оборони та іншого призначення Загальні риси правового режиму земель промислово...
18184. Проблема одаренности: анализ базовых дефиниций 136 KB
  Тема 1. Проблема одаренности: анализ базовых дефиниций. Общее представление об одаренности Трехсторонняя модель одаренности. Трехкольцевая модель Д.Рензулли. Проблема соотношения творчества и обучения. Природа творчества и деятельности по Дружинину.