22020

Кинетика химических реакций

Лекция

Биология и генетика

Зависимость изменения концентрации участников реакции т. субстратов и продуктов от времени называют кинетикой реакции. Итак повторим некоторые определения: Субстраты вещества вступающие в реакцию Продукты вещества образующиеся в результате реакции Промежуточные вещества продукты сразу же вступающие в новую реакцию Скорость реакции изменение концентрации одного из продуктов который рассматривается в качестве главного.

Русский

2013-08-04

144.5 KB

23 чел.

Кинетика химических реакций

Введение

Когда происходит химическая реакция, то одни вещества - субстраты реакции - превращаются в другие - продукты реакции. Соответственно этому, с течением времени после начала процесса концентрация субстратов уменьшается, а концентрация продуктов - возрастает. Зависимость изменения концентрации участников реакции (т.е. субстратов и продуктов) от времени называют кинетикой реакции. Кривые таких зависимостей называют кинетическими кривыми, а математические уравнения, которые описывают кинетические кривые, называют уравнениями кинетики.

Итак, повторим некоторые определения:

  •  Субстраты - вещества, вступающие в реакцию
  •  Продукты - вещества, образующиеся в результате реакции
  •  Промежуточные вещества -продукты, сразу же вступающие в новую реакцию
  •  Скорость реакции - изменение концентрации одного из продуктов, который рассматривается в качестве главного.

Скорость химической реакции

Концентрации веществ в химии принято выражать в киломолях на кубический метр (кмоль/м3) или, что то же самое, в молях на литр (моль/л). Концентрации в таких единицах называют молярными концентрациями и обозначают большой буквой М. Полумолярный раствор (0,5 моль/л) NaCl обозначают как 0,5М NaCl.

Молярная концентрация вещества в химической кинетике обозначается формулой того же вещества, заключенной в квадратные скобки. Так [Fe2+] - это молярная концентрация ионов двухвалентного железа.

Скорость химической реакции - это изменение концентрации какого-либо из участников реакции за секунду. Таким образом в реакции:

Fe2+ + HOOH ® Fe3+ + OH- + HO•

скорость реакции это:

От чего зависит скорость реакции

Интуитивно, каждый понимает, что число молекул, которые вступят в реакцию за единицу времени, зависит от ряда обстоятельств:

  1.  от концентрации реагирующих молекул, т.е. от концентрации первого субстрата реакции; в нашем случае это концентрация ионов Fe2+.
  2.  от вероятности встретить другую молекулу, которая пропорциональна числу молекул в единице объёма, а следовательно пропорциональна молярной концентрации второго субстрата реакции; в нашем случае это величина [HOOH].
  3.  от вероятности того, что столкнувшиеся молекулы прореагируют. Обозначим её через р.

Таким образом, скорость реакции в нашем случае будет равна:

(1)

 

,

где K- коэффициент пропорциональности. Произведение констант K ´ p в свою очередь является некоторой постоянной и называется константой скорости реакции. Обозначим её через k.

(2)

Порядок рeакции

Поскольку скорость реакции взаимодействия двух веществ пропорциональна произведению концентраций этих двух субстратов, такого типа реакции называются реакциями второго порядка.

Если бы для реакции требовалось одновременное участие трёх субстратов, то скорость её должна была бы зависеть от произведения концентраций всех трёх веществ, и мы бы имели реакцию третьего порядка. Этого однако практически не бывает, поскольку в подобных ситуациях сначала обычно реагируют две молекулы. а уж потом в дело вступает третья.

Известны реакции, где имеется всего один субстрат; сюда относятся реакции распада или изомеризации веществ. В этом случае скорость реакции пропорциональна концентрации этого одного субстрата. Такие реакции называются реакциями первого порядка. Скорость реакции первого порядка A ® B равна:

(3)

Кинетика простейших реакций

Изучение химических реакций включает в себя выяснение строения продуктов реакции и изучение скорости реакции, а также зависимости скорости от условий протекания реакции: температуры, состава и свойств растворителя и т Практически исследователь имеет возможность, используя различные методы анализа, например спектрофотометрию, измерять непрерывно или время от времени концентрацию одного или нескольких субстратов и продуктов. Зависимость концентрации от времени (кинетические кривые) сравниваются с кривыми, полученными путём расчётов, т.е. с результатами математического моделирования процесса. Рассмотрим, как будут выглядеть кинетические кривые в разных случаях.

Реакции первого порядка

Как уже говорилось, кинетика реакции первого порядка описывается дифференциальным уравнением 3, из которого можно сразу найти зависимость от времени концентрации субстрата реакции [A]. Для этого разделим переменные и проинтегрируем:

; ;

(4)

 

Откуда

(5)

 

Если все молекулы субстрата A превратились в молекулы продукта B, то найти изменение во времени концентрации продукта можно, используя уравнение материального баланса:

(6)

 

Откуда

(7)

 

Кривые зависимости субстрата и продукта реакции от времени даны на рис.1.

Рис. 1. Кинетика реакции первого порядка

Построено по уравнению

A=10exp(x/20)

B=10-A

Обратимые реакции

Предположим, вещество A может превращаться в вещество B, а оно, в свою очередь, обратно переходит в вещество A. Изменение концентрации вещества A обусловлено одновременным протеканием двух реакций: распада A со скоростью k1[A] и его образования со скоростью k2[B]. Скорость изменения концентрации вещества A равна разности этих величин:

(8)

Надо сказать, что чем сложнее схема реакции, тем сложнее соответствующая система уравнений, и преобразования могут стать довольно громоздкими. Поэтому в дальнейшем мы наряду с распространенным обозначением концентрации будем использовать переменные в виде малых латинских букв, т.е. a вместо [A], b вместо [B] и т

Концентрацию b находим из уравнения 6 материального баланса и подставляем в уравнение 8.

(9)

или, используя новые, более компактные обозначения:

(10)

Произведём разделение переменных:

(10)

и интегрирование в пределах от ao до a и от 0 до t:

(11)

 

После преобразований получаем весьма громоздкое выражение для значения концентрации субстрата:

откуда

(12)

Это выражение можно несколько упростить, если ввести понятие равновесной концентрации вещества A: при .

(13)

 

Из уравнения 12 получаем ,

(14)

Что вместе с 12 дает:

С другой стророны, из уравнения 13 находим

(15)

Разделив уравнение 14 на 15, получаем очень интересное выражение:

(16)

 

Откуда

На рис. 2 приведены кривые кинетики (изменения во времени концентраций) для веществ A и B в случае обратимого процесса. Анализ этих кривых, если они получены экспериментально, сразу позволяет найти отношение констант скоростей k1/k2. Чтобы определить сами скорости, необходимо построить график в виде линейной анаморфозы (см. ниже).

Рис. 2. Кинетика обратимой мономолекулярной реакции

По отношению отрезков ординат для a при достижении равновесия (a¥ ) находим соотношение констант прямой и обратной реакции. (см. уравнение 16) 

Построение линейных анаморфоз

В химической кинетике кривые, полученные в эксперименте, стремятся путем математических операций превратить в прямые линии, поскольку анализ прямых позволяет получать параметры, включающие в себя константы скоростей реакций. Рассмотрим это на примерах обратимых и необратимых мономолекулярных реакций.

Для необратимой реакции существует линейная зависимость между логарифмом концентрации субстрата реакции и временем (см. уравнение 5):

, откуда

(17)

 

 

Если найти опытным путем концентрации вещества A через разные промежутки времени после начала реакции, а затем построить график зависимости натурального логарифма концентрации от времени, то по тангенсу угла наклона полученной при этом прямой сразу находим константу скорости, поскольку она является угловым коэффициентом данной прямой (см. рис. 3).

Рис. 3. Кривая расхода субстрата мономолекулярной реакции в полулогарифмическом масштабе. Объяснения даны в тексте.

Построение линейной анаморфозы кинетической кривой для концентрации субстрата обратимой мономолекулярной реакции требует экспериментального определения равновесной концентрации субстрата a¥ , т.е. той концентрации, которая установится по источению некоторого времени и в дальнейшем не будет изменяться. Затем из экспериментальных данных рассчитывается для каждого момента времени, при котором определяли концентрации, отношение , натуральный логарифм которого откладываем по ординате графика как функцию времени (см. рис. 4). Получается прямая линия (см. уравнение 16):

 откуда

(18)

 

По тангенсу угла наклона этой прямой находим сумму констант скоростей прямой и обратной реакции (см. рис. 4).

Рис. 4. Кинетика обратимой мономолекулярной реакции

Данные представлены в формате, позволяющем найти сумму констант скоростей прямой и обратной реакции по тангенсу угла наклона прямой.

Объяснения - в тексте.

Отношение констант мы находим из уравнения 13

откуда

(19)

 

Это уравнение нужно сопоставить с кривой на рисунке 2.

Мы надеемся, что читатель сумеет рассчитать константы скорости, зная их отношение и сумму .

Последовательные и параллельные реакции

Последовательные реакции с одним промежуточным продуктом

Рассмотрим кинетику реакции превращения вещества A в вещество B, которое затем сразу же превращается в вещество C. Вещество В называют промежуточным соединением или интермедиантом.

Запишем уравнения кинетики, т.е. дифференциальные уравнения, описывающие скорости реакций образования всех трёх участников:

(20 - 22)

 

а также уравнение материального баланса:

a + b + c = ao 

(23)

Уравнение 20 решается после разделения переменных:

(24)

 

Откуда

(25)

Подставив значение a в уравнение 21, получаем дифференциальное уравнение:

(26)

 

Решением уравнения 26 служит следующее выражение

(27)

 

Имея значения a и b в каждый данный момент времени, можно подсчитать значение c по уравнению 23.

Примеры кинетических кривых, рассчитанных по уравнениям 6, 8 и 4, даны на рис. 1.

Стационарное состояние

В организме концентрации основных метаболитов поддерживаются на более или менее постоянном уровне; это означает, что скорость образования каждого метаболита равна скорости его утилизации. Такое состояние системы называется стационарным.

Для более строгого определения стационарного состояния рассмотрим последовательные реакции образования метаболита A и его превращения в промежуточные продукты B и C.

(28)

 

Скорости накопления продуктов равны

(29)

 

По определению, в стационарном стоянии

(30)

 

а следовательно:

(31)

 

Теперь нетрудно найти значения стационарных концентраций A, B и C:

(32)

Это простое уравнение полно глубокого смысла. В словесной формулировке оно выражает закон:

Стационарная концентрация метаболитов пропорциональна скорости их образования и обратно пропорциональна константе их распада.

Назовём для большей образности величину, обратную константе распада, стабильностью данного соединения. Из уравнения 32 следует, что

Чем стабильнее соединение, тем выше его стационарная концентрация

"Ловушки" нестабильных метаболитов

Возможность аналитического определения веществ в биохимической системе в основном определяется их концентрацией. Например, используя спектральные измерения поглощения света, можно определить концентрацию вещества в области от 10 до 100 мкМ (10-4 - 10-5М). С помощью измерений флуоресценции удаётся определять на 2-3 порядка более низкие концентрации флуоресцирующих соединений. Биолюминесценция в системе люциферин-люцифераза светляка позволяет измерять концентрации АТФ от 10-12 до 10-15М.

Несмотря на высокую чувствительность современным биохимических методов, многие метаболиты образуются медленно, а распадаются очень быстро и их стационарная концентрация (в полном соответствии с уравнением 32) слишком мала для её определения и даже для простого обнаружения метаболита. Типичный пример - это реакции с участием свободных радикалов. Свободные радикалы образуются не в очень уж больших количествах, а главное - обладают очень низкой стабильностью (т.е. высокой скоростью реакций с другими соединениями); поэтому обычно их не удаётся зарегистрировать ни одним из существующих методов, включая метод epr. Выход из положения был найден благодаря использованию спиновых ловушек: молекул, которые перехватывают радикалы, давая новые радикалы, но уже устойчивые (стабильные, т.е. с низкой скоростью взаимодействия с другими веществами).

 

 


 

А также другие работы, которые могут Вас заинтересовать

81540. Регуляция синтезами секреции гормонов по принципу обратной связи 126.07 KB
  Поддержание уровня гормонов в организме обеспечивает механизм отрицательной обратной связи. Изменение концентрации метаболитов в клеткахмишенях по механизму отрицательной обратной связи подавляет синтез гормонов действуя либо на эндокринные железы либо на гипоталамус. Синтез и секреция тропных гормонов подавляется гормонами эндокринных периферических желёз.
81541. Половые гормоны: строение, влияние на обмен веществ и функции половых желез, матки и молочных желез 133.12 KB
  Биосинтез эстрогенов как биохимический процесс представляет собой ароматизацию С19стероидов катализируемую комплексом ферментов локализованных в микросомах. У женщин детородного возраста основная масса эстрогенов синтезируется в яичнике содержащем зреющий фолликул или желтое тело. Синтез эстрогенов в фолликуле определяется взаимодействием двух стероидпродуцирующих структур зернистого слоя и текаклеток. Синтез эстрогенов в зреющем фолликуле является одним из основных факторов определяющих функцию гипофизарноовариальной системы т.
81542. Гормон роста, строение, функции 102.09 KB
  Гормон роста соматотропин пептидный гормон образуется в соматотропных клетках аденогипофиза. Молекула СТГ состоит из 191 аминокислотного остатка на восемь остатков меньше чем в молекуле пролактина и в отличие от пролактина содержит не три а два внутримолекулярных дисульфидных мостика Гормоном роста соматотропин называют за то что у детей и подростков а также молодых людей с ещё не закрывшимися зонами роста в костях он вызывает выраженное ускорение линейного в длину роста в основном за счет роста длинных трубчатых костей...
81543. Метаболизм эндогенных и чужеродных токсических веществ: реакции микросомального окисления и реакции конъюгации с глутатионом, глюкуроновой кислотой, серной кислотой 144.87 KB
  В ЭР существуют две такие цепи первая состоит из двух ферментов NDPHP450 редуктазы и цитохрома Р450 вторая включает фермент NDHцитохромb5 редуктазу цитохром b5 и ещё один фермент стеароилКоАдесатуразу. Электронтранспортная цепь NDPHP450 редуктаза цитохром Р450. Восстановленный FMN FMNH2 окисляется цитохромом Р450 Цитохром Р450 гемопротеин содержит простетическую группу гем и имеет участки связывания для кислорода и субстрата ксенобиотика. Название цитохром Р450 указывает на то что максимум поглощения комплекса...
81544. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока 109.86 KB
  Белки теплового шока. Белки теплового шока это класс функционально сходных белков экспрессия которых усиливается при повышении температуры или при другихстрессирующих клетку условиях. Повышение экспрессии генов кодирующих белки теплового шока регулируется на этапе транскрипции. Чрезвычайное усиление экспрессии генов кодирующих белки теплового шока является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока HSF англ.
81545. Токсичность кислорода: образование активных форм кислорода (супероксид анион, перекись водорода, гидроксильный радикал) 132.6 KB
  К активным формам кислорода относят: ОН гидроксильный радикал; супероксидный анион; Н2О2 пероксид водорода. Активные формы кислорода образуются во многих клетках в результате последовательного одноэлектронного присоединения 4 электронов к 1 молекуле кислорода. Конечный продукт этих реакций вода но по ходу реакций образуются химически активные формы кислорода.
81546. Повреждение мембран в результате перекисного окисления липидов. Механизмы защиты от токсического действия кислорода: неферментативные (витамины Е, С, глутатион и др.) и ферментативные (супероксиддисмутаза, каталаза, глутатионпероксидаза) 114.75 KB
  Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц болезнь Дюшенна болезни Паркинсона при которых ПОЛ разрушает нервные клетки в стволовой части мозга при атеросклерозе развитии опухолей. Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже особенно на дорсальной поверхности ладоней. Этот пигмент называют липофусцин представляющий собой смесь липидов и белков связанных между собой поперечными ковалентными связями и...
81547. Биотрансформация лекарственных веществ. Влияние лекарств на ферменты, участвующие в обезвреживании ксенобиотиков 105.66 KB
  Гидрофобные соединения легко проникают через мембраны простой диффузией в то время как лекарственные вещества нерастворимые в липидах проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Следующие этапы метаболизма лекарственного вещества в организме тоже определяются его химическим строением гидрофобные молекулы перемещаются по крови в комплексе с альбумином кислым агликопротеином или в составе липопротеинов. В зависимости от структуры лекарственное вещество может поступать из крови в клетку...
81548. Основы химического канцерогенеза. Представление о некоторых химических канцерогенах: полициклические ароматические углеводороды, ароматические амины, диоксиды, митоксины, нитрозамины 135.77 KB
  В покоящихся клетках ДНК двухспиральна и азотистые основания защищены от воздействия повреждающих агентов. Первичные или вторичные эпоксиды обладая высокой реакционной способностью могут взаимодействовать с нуклеофильными группами в молекуле ДНК. Метаболизм нитрозаминов микросомальной системой окисления приводит к образованию иона метилдиазония который способен метилировать ДНК клеток индуцируя возникновение злокачественных опухолей лёгких желудка пищевода печени и почек Основным продуктом взаимодействия нитрозаминов с ДНК клетки...