22027

Активированная хемилюминесценция и биолюминесценция

Лекция

Биология и генетика

Так например комплекс редкоземельного иона европия Eu3 c антибиотиком хлортетрациклином усиливает ХЛ при окислении липидов почти в 1000 раз. Хемилюминесцентный иммунный анализ По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного с той только разницей что вместо радиоактивномеченных субстратов или антител используются субстраты и антитела меченные соединением которое вступает в реакции сопровождающиеся хемилюминесценцией в присутствии перекиси водорода и катализатора обычно это фермент пероксидаза....

Русский

2013-08-04

114 KB

19 чел.

Активированная хемилюминесценция и биолюминесценция

РЕЗЮМЕ

   Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, отличается низкой интенсивностью, что стало главным препятствием на пути к широкому ее использованию в аналитических целях. В присутствии определенных соединений, активаторов ХЛ, хемилюминесценция при реакциях активных форм кислорода и пероксидации липидов может быть усилена в тысячи и сотни тысяч раз.

   В основе биолюминесценции лежат химические превращения особых веществ (люциферинов) под действием специальных ферментов (люцифераз). Как хемилюминесценция, так и биолюминесценция находят широкое применение в аналитической биохимии, в частности, в клиническом биохимическом анализе.

Активированная хемилюминесценция

   Собственная хемилюминесценция, сопровождающая биохимические реакции в клетках и тканях, обладает, как правило, очень низкой интенсивностью и не случайно получила название "сверхслабого свечения" [1] . Это оказалось главным и пока не преодоленным препятствием на пути к широкому использованию собственной хемилюминесценции в аналитических целях.

   Значительное распространение получило однако измерение хемилюминесценции в присутствии определенных соединений, получивших в отечественной литературе общее название "активаторов", а за рубежом - "усилителей" (enhancer) хемилюминесценции. По механизму действия активаторы распадаются на две четко различающиеся группы, которые можно соответственно назвать химическими и физическими активаторами [2].

   Химические активаторы ХЛ - это соединения, вступающие в реакции с активными формами кислорода или органическими свободными радикалами, в ходе которых образуются молекулы продуктов в возбужденном электронном состоянии.

   Наблюдаемое при этом hemilum связано с переходом молекул в основное состояние., что приводит к высвечиванию фотонов:

Активатор + радикалы ® продукт* ® продукт + фотон

   Хорошо известными представителями таких активаторов могут служить люминол (3-аминофталевый гидразид, см. Рис. 4) и люцигенин [Бис(N-метилакридиний)]. На рис. 1 дана упрощенная схема превращений люминола в присутствии радикалов кислорода. Под действием окислителя, в нашем случае - радикала гидроксила, происходит образование радикала люминола, который затем вступает в реакцию с супероксидным радикалов, образуя внутреннюю перекись (диоксид). Ее разложение приводит к образованию возбужденной молекулы 3-аминофталата. Переход этой молекулы в основное состояние сопровождается испусканием кванта света.

   Физические активаторы не вступают в химические реакции и не влияют на ход реакций, сопровождающихся hemilumм, но тем не менее многократно усиливают интенсивность хемилюминесценции. В основе их действия лежит физический процесс процесса переноса (миграции) энергии с молекулы продукта хемилюминесцентной реакции на активатор:

Радикалы ® продукт* ® продукт + фотон 1 (неактивированная ХЛ)

Продукт* + активатор ® продукт + активатор* ® фотон 2 (активированная ХЛ)

   Интенсивность свечения в большой степени зависит от квантового выхода люминесценции продукта реакции, т.е. от того, какая часть возбужденных молекул продукта перейдет в основное, невозбужденное состояние с испусканием фотона. Обычно эта доля невелика, всего десятые или даже сотые доли процента. Но если все молекулы продукта передадут энергию электронного возбуждения на молекулам активатора, то интенсивность свечения будет теперь определяться уже квантовым выходом люминесценции активатора, который в идеале приближается к единице.

   К физическим активаторам можно отнести некоторые люминесцирующие соединения, усиливающие ХЛ при цепном окислении липидов. Измерение этой хемилюминесценции пока еще не стало рутинным лабораторным методом в значительной мере из-за ее низкой интенсивности. Поэтому ведется поиск веществ, усиливающих “липидную” ХЛ. Оказалось, что некоторые красители и комплексы редкоземельных элементов обладают способностью многократно усиливать интенсивность такой хемилюминесценции.

   Так например, комплекс редкоземельного иона европия (Eu3+) c антибиотиком хлор-тетрациклином усиливает ХЛ при окислении липидов почти в 1000 раз. Один из красителей, производное кумарина, применяемое при создании лазеров под условным названием С-525, усиливает хемилюминесценцию, сопровождающую цепное окисление липидов, более, чем в 1500 раз, никак не влияя при этом на ХЛ при взаимодействии радикалов кислорода (гидроксила и супероксида). Формула этого вещества приведена ниже.

   Активируют hemilum (правда в меньшей степени) и такие известные красители как родамин Ж6, нильский красный и нильский синий, а также некоторые порфирины. Все эти активаторы не оказывают влияния на ход реакций перекисного окисления, но заметно увеличивают интенсивность свечения. По-видимому, в основе их действия лежит физический процесс процесса переноса (миграции) энергии с молекулы продукта хемилюминесцентной реакции (например, кетона)на активатор:

LOO· + LOO· ® LOH + L=O* + O2
L=O*
® L=O + hn 1 (слабое hemilum; j = 10-4)
L=O* + А
® L=O + А* (перенос энергии)
А*
® А + hn A (яркое hemilum; j = 10-2 - 10-1) 

   Интенсивность свечения в присутствии активатора во много раз выше, чем без него, по той причине, что квантовый выход j люминесценции активатора (А) выше квантового выхода люминесценции продукта реакции (Р). Было также показано, что спектр активированной хемилюминесценции в изученных случаях был сходен со спектром фотолюминесценции активатора, т.е. его люминесценции при освещении ультрафиолетовыми лучами.

Использование активированной ХЛ в биохимических анализах

Обнаружение катализаторов, разлагающих перекись водорода с образованием свободных радикалов

   Чистая перекись водорода с люминолом реагирует вяло, и хемилюминесценция при этом не наблюдается. Если перекись водорода разлагается ферментативным путем, например, при действии каталазы, свободные радикалы не образуются и hemilum также не возникает. В присутствии ионов металлов переменной валентности, таких как железо, медь или марганец, а также некоторых их комплексов, например, производных гема, перекись водорода разлагается с образованием радикалов (гидроксила и супероксида) и возникает яркое hemilum, связанное с реакциями люминола (см. Рис. 1).

Рис. 1. Химические превращения люминола под действием активных форм кислорода - радикалов гидроксила и супероксида.Продукт реакций 3-аминофталат образуется в электронно-возбужденном состоянии и переходит в основное состояние с испусканием кванта света.

   По этой причине хемилюминесценция в присутствии люминола часто используется для определения в биологических средах малых количеств геминовых соединений, металлов переменной валентности, а также вообще способности биологического материала разлагать перекись водорода.

   Приведем некоторые примеры. 

   У больных инфарктом миокарда в моче могут появиться очень небольшие количества миоглобина. Гем-содержащие соединения, к которым относится миоглобин, дают очень яркое hemilum в присутствии перекиси водорода и люминола в сильно щелочной среде. hemilum мочи в этих условиях может служить одним из показателей инфаркта у больного (Барон, 1985 , цит. По [1]).

   На поверхности свежей раны выделяется жидкость, называемая раневым экссудатом. В ней содержится каталаза - фермент, разлагающий перекись водорода без образования свободных радикалов. Наряду с этим жидкость содержит другие гем-содержащие белки и ионы железа, которые катализируют разложение перекиси водорода с образованием свободных радикалов кислорода, токсичных для клеток окружающей ткани. При добавлении к раневому экссудату перекиси водорода с люминолом наблюдается хемилюминесценция, тем более сильная, чем больше радикалов образуется при разложении перекиси.

   Таким образом, хемилюминесценция показывает, сколько токсичных радикалов образуется в экссудате. В свежей ране таких радикалов много, а по мере заживления их становится все меньше и меньшее. Ускорение заживления ран за счет применения лекарственных средств или облучения светом лазера сопровождается соответственным снижением хемилюминесценции экссудата. Таким образом, этот метод позволяет врачу контролировать эффективность лечения и вносить коррективы в сроки и дозы применения лечебных процедур [4].

Люминесценция фагоцитов

   В рассмотренных случаях радикалы кислорода образовывались при разложении перекиси водорода, добавленной экспериментатором. Но живые клетки - фагоциты (к которым относятся гранулоциты и моноциты крови, а также тканевые макрофаги) сами образуют активные формы кислорода при их стимулировании. При этом наблюдается хемилюминесценция, особенно яркая в присутствии люминола (или люцигенина).

Рис. 2. Хемилюминесценция клеток крови после их стимуляции электрическими импульсами.
А - кривые хемилюминесценции в присутствии люминола после действия на кровь электрических импульсов разного напряжения (показано цифрами около кривых, вольты).
Б - различия в ХЛ ответах клеток здоровых доноров и больных семейной гиперхолестеринемией. Назначенное лечение - УФ - облучение крови ((УФ-ОК) оказалось неэффективным, если верить данному показателю. Результаты получены в клинике Гумбольдта, Берлин [5].

   На рисунке 2 (А) в качестве примера показана хемилюминесценция клеток крови при действии на кровь кратковременных электрических импульсов, вызывающих увеличение проницаемости клеточных мембран и стимуляцию выделения клетками активных форм кислорода. Такие же "хемилюминесцентные ответы" можно получить, если добавить к лейкоцитам крови суспензию бактерий, изолированные оболочки дрожжевых клеток, кристаллы кварца или сульфата бария, а также определенные химические соединения; все эти агенты получили собирательное название "стимулов".

   Стимулированная ХЛ клеток в присутствии люминола - ценный показатель функционального состояния фагоцитов крови и тканей, их способности производить при необходимости активные формы кислорода, т.е. выполнять свою защитную функцию. Эта способность обычно усиливается про возникновении в организме очагов воспаления (например, после инфаркта миокарда) и в ряде других случаев. Наоборот, при длительном недостатке кислорода, связанном с общим ослаблением организма, активность фагоцитов и ХЛ-ответы снижаются. Два результата таких исследований даны в качестве примера на рис. 2 (Б) и 3.

   Как видно на рис. 2 (Б) у больных семейной гиперхолестеринемией (при этой наследственной болезни в крови содержится очень много холестерина и имеется выраженная предрасположенность к раннему развитию атеросклероза) ХЛ ответ клеток на стимул почти в четыре раза превышает ответ клеток здоровых доноров. Назначенное лечение - облучение крови ультрафиолетовым светом (УФ-ОК) оказалось малоэффективным, если верить данному показателю.

   В Институте Физико-химической медицины М Шерстневым было проведено обследование большой группы больных различными заболеваниями (рис. 3).

Рис. 3. Амплитуда ХЛ-ответов изолированных лейкоцитов крови, полученной от больных различными заболеваниями [5].Стимулирование клеток осуществляли частичками латекса.

   При затяжных хронических заболеваниях hemilum клеток снижалось, тогда как при возникновении или обострении воспалительного процесса у больных происходило резкое увеличение активности клеток-фагоцитов. Так встречает организм инфекционную опасность - усиливается способность фагоцитов выделять активные формы кислорода для борьбы с чужеродными микроорганизмами.

   Хотя люминесценция люминола - весьма чувствительный метод обнаружения радикалов кислорода, метод не очень специфичен. hemilum наблюдается при действии на люминол не только радикалов гидроксила, но и при действии гипохлорита и ряда других окислителей. Заметный вклад в ХЛ-ответ клеток вносит выделение окиси азота: ингибитор NO-синтазы (фермента катализирующего образование окиси азота в клетках) hemilum почти вдвое.

   Большей избирательностью отличается люцигенин, hemilum которого происходит при восстановлении красителя супероксидными радикалами. Это соединение часто используется для изучения образования супероксидных радикалов различными клетками и при биохимических реакциях "в пробирке".

Хемилюминесцентный иммунный анализ

   По идеологии хемилюминесцентный иммунный анализ не отличается от радиоиммунного, с той только разницей, что вместо радиоактивно-меченных субстратов или антител используются субстраты и антитела,"меченные" соединением, которое вступает в реакции, сопровождающиеся хемилюминесценцией, в присутствии перекиси водорода и катализатора (обычно это фермент пероксидаза).

   Хемилюминесцентной меткой (ХЛ-меткой) чаще всего служат низкомолекулярные соединения, по химической структуре близкие люминолу и люцигенину, такие как изолюминол, сукцинилированный люминол, эфиры акридиния и другие. Присоединение хемилюминесцентной метки производится либо к антигену, т. е. низкомолекулярному соединению либо к антителу на этот антиген. В первом случае метод называется CIA (Chemiluminescent Immuno Assay), во втором - ICMA (ImmunoChemiluminoMetric Assay). По русски это соответствовало бы ХИА (Хемилюминесцентный Иммунный Анализ) и ИХМА (Иммуно-ХемилюминоМетрический Анализ).

   Оба метода направлены на определение биологически-важных низкомолекулярных соединений (например, гормонов) в тех концентрациях (как правило, очень низких), в которых они встречаются в биологических объектах.

Рис. 4. Принцип иммунохемилюминесцентного анализа.

   При использовании метода CIA (см. Рис. 4 А) к раствору, содержащему интересующее нас анализируемое соединение (обозначим его как A) добавляют определенное количество того-же, но ХЛ-меченного соединения (обозначим его как A*) и антитела (анти-A). Образуется смесь меченных и немеченных иммунных комплексов (A-анти-A и A*-анти-A, соответственно):

A + A* + анти-A ® A-анти-A + A*-анти-A.

   Очень важно, что пропорция между меченным и немеченым иммунными комплексами зависит от того, сколько меченного антигена мы добавили (A*) и сколько немеченого было в исследуемой пробе (A), а именно: чем больше было немеченого антигена, тем меньше доля меченных антител.

   Теперь остается очистить смесь иммунных комплексов и определить количество A*-анти-A по хемилюминесценции. Интенсивность ХЛ будет тем меньше, чем больше было немеченых антигена A (т. е. анализируемого вещества) в исследуемой пробе. Чтобы анализ был количественным, предварительно строят калибровочную кривую, т. е. измеряют зависимость интенсивности ХЛ в конечной пробе от концентрации стандартного раствора изучаемого вещества A. Затем измеряют интенсивность ХЛ в растворе с неизвестной концентрацией антигена (A), повторяя те же процедуры, и по калибровочной кривой находят концентрацию A.

   При использовании метода ICMA (Рис. 4 Б) берут избыток ХЛ-меченного антигена (анти-A*) и добавляют к нему раствор с изучаемым веществом (A). Образуется ХЛ-меченный иммунный комплекс:

A + анти-A* ® A-анти-A*

   Остается отделить иммунные комплексы от других участников реакции и измерить интенсивность ХЛ. В данном случае она будет тем выше, чем больше было анализируемого вещества A в пробе. Для количественного анализа и здесь предварительно строят калибровочную кривую.

   В обоих методах одна из практических трудностей - это очистка иммунных комплексов. Она решается также методами иммунохимии. Детали этой техники мы здесь рассматривать не будем, но один из подходов заключается, например, в использовании порошка сорбента (см. Рис. 6 В), к поверхности которого "пришиты" (т. е. присоединены ковалентной химической связью) антитела к анти-А (назовем их анти-анти-А). В присутствии растворенных комплексов (А-анти-А и/или А*-анти-А) образуется тройной комплекс ("сандвич"): (анти-анти-А)-(анти-А)-А и/или (анти-анти-А)-(анти-А)-А*. Адсорбент можно осадить и затем определить в осадке (после дополнительных обработок) количество меченного антигена.

Биолюминесценция

   Биолюминесценция - (БЛ) - это hemilum живых организмов, видимое простым глазом. Способностью к БЛ обладают организмы, принадлежащие к самым разным систематическим группам: бактериям, грибам, моллюскам, насекомым. Механизм реакций, сопровождающихся hemilumм, весьма различен у разных видов; однако обычно включает в себя химическое превращение определенного низкомолекулярного субстрата, называемого люциферином, катализируемое ферментом, называемым люциферазой.

Биолюминесценция медузы Aequorea

   В последнее время для обнаружения малых количеств ионов кальция широко используется хемилюминесценция белка, выделенного из медузы Aequorea. Этот фотопротеин, называемый акворином, содержит в себе ковалентно связанный люциферин, который в присутствии ионов Са2+ подвергается химическим превращениям с образованием продукта в возбужденном электронном состоянии. Вследствие малой инерционности и высокой чувствительности биолюминесцентный метод весьма эффективен при изучении высвобождения и связывания Са2+ в биологических системах, например, во время мышечного сокращения. При этом экворин добавляют прямо к изучаемому объекту и по интенсивности биолюминесценции следят за динамикой изменения содержания свободного кальция.

Биолюминесценция светящихся бактерий

   К числу светящихся относится немного видов бактерий. Хемилюминесцентная реакция, непосредственно сопровождаемая hemilumм, катализируется ферментом — бактериальной люциферазой и включает в себя процессы окисления восстановленного флавинмононуклеотида ФМН-Н2 до ФМН и одновременно - алифатического (С14) альдегида до миристиновой (С14) кислоты. Эта реакция протекает, по-видимому, через стадию образования пероксида флавинмононуклеотида.

ФМН-H2 + E + O2 ® E-ФМН-H2-OOH RCHO-E-ФМН-H2-OOH ®
RCOOH + E-ФМН-HOH*
® RCOOH + E + ФМН + H2O + фотон (490 нм)

   Здесь E - люцифераза, OOH - гидроперекисная группа, RCOOH - алифатический альдегид, RCOOH - жирная кислота, образующаяся при окислении альдегида.

   В последние годы получают все большее распространение биохимические анализы, в которых в качестве тест-объекта используют целые бактериальные клетки (в суспензии), экстракты светящихся бактерий, изолированный фермент - люциферазу.

   Прежде всего, измерение биолюминесценции бактерий можно использовать для определения низких концентраций кислорода. Дело в том, что в отсутствие кислорода фотобактерии не обладают hemilumм, hemilum усиливается пропорционально концентрации кислорода в среде в интервале концентраций О2 от 2•10-8 до 5•10-6 моль/л.

   Можно использовать светящиеся бактерии и в качестве "лабораторного животного", т. е. живых организмов, на которых изучают, к примеру, действие различных токсических веществ. Светящиеся бактерии весьма чувствительны к примесям токсических веществ в воде, и измерение биолюминесценции можно использовать для оценки загрязнения воды токсическими соединениями, скажем ионами тяжелых металлов.

   С другой стороны, hemilum бактерий можно использовать для предварительной оценки эффективности новых антибиотиков. Но наиболее перспективно, несомненно, применение очищенных препаратов бактериальной люциферазы. Фермент, очищенный от примесей низкомолекулярных соединений, обладает способностью к излучению света лишь в присутствии всех трех субстратов: кислорода, ФМН-Н2 и длинноцепочечного альдегида (с длиной цепи не менее 8 углеродных атомов). Добавив к изолированной бактериальной люциферазе ФМН-Н2, исследователь получает высокочувствительную систему для определения алифатических альдегидов; к их числу принадлежат, в частности, половые гормоны насекомых, феромоны, которые обнаруживаются в количестве 10-14 моль, что позволяет изучать метаболизм этих веществ у одной особи.

   В медицине обещает найти широкое применение анализ содержания ФМН и ФАД, основанный на биолюминесцентном определении ФМН-Н2, образующегося при их предварительном восстановлению.

   Наиболее широкое применение в биохимических и клинических лабораторных анализах обещает получить препарат, состоящий из смеси двух компонентов (ферментов): бактериальной люциферазы и НАДН:ФМН-оксидоредуктазы. 

   В отечественном наборе КРАБ (комплект реактивов для анализа биолюминесценции) содержатся люцифераза и оксидоредуктаза, выделенные из биомассы светящихся бактерий. Добавив к препарату в присутствии С15-альдегида НАДН, получается высокочувствительный реактив для определения ФМН (без его предварительного восстановления):

НАДH + ФМН ® НАД + ФМН-H2 ® Биолюминесценция

   Наоборот, если добавить к смеси люциферазы и оксидоредуктазы альдегид и ФМН, то такая смесь может использоваться как биолюминесцентная тест-система для количественного определения НАДН в биологических материалах (схема реакций такая же).

   Удлиняя цепочку биохимических стадий, предшествующих биолюминесценции, можно получить все новые аналитические возможности. Для определения активности ферментов дегидрогеназ или (альтернативно) для определения концентрации субстратов этих ферментов используется следующая тест-система:

Люцифераза + Оксидоредуктаза + Альдегид + ФМН + НАД+

   В присутствии субстрата какой-либо дегидрогеназы, например, в присутствии лактата, можно определять по биолюминесценции активность соответствующей дегидрогеназы (в нашем примере активность ЛДГ, лактатдегидрогеназы):

Субстрат + НАД+ ® НАДН

   и далее по схеме, приведенной выше.

   В присутствии изолированной дегидрогеназы можно определять концентрацию субстрата этого фермента в интересующей нас химической или биохимической системе (схема реакций та же).

Заключение

   Подобно многим другим разделам науки, хемилюминесценция и биолюминесценция вначале были объектом исследования, а потом стали методом исследования других объектов. На сегодняшний день химические и физические явления, лежащие в основе чудесного превращения энергии биохимических реакций в световое излучение, в основном расшифрованы.

   Началось более или менее широкое использование хеми- и биолюминесценции в биохимических лабораторных и клинических исследованиях. Создаются серийные приборы - хемилюминометры и биолюминометры, выпускаются наборы реактивов для анализа определенных антигенов, антител и ферментов в крови больных и в других биологических жидкостях. Ведется поиск новых соединений, обладающих способностью вступать в химические реакции, сопровождающиеся hemilumм, с химически-активными продуктами жизнедеятельности живых клеток, такими как свободные радикалы и пероксиды (химические активаторы ХЛ), равно как и веществ, усиливающих квантовый выход хемилюминесценции (физические активаторы ХЛ).

   Одновременно с этим расширяется применение в аналитических целей методов биолюминесценции. Прогресс органической химии, молекулярной биологии и биотехнологии избавил нас от необходимости путешествовать на юг, чтобы ловить по ночам светляков, или охотиться в океане за медузами, чтобы выделить из живых существ фермент люциферазу и субстрат биолюминесцентных реакций - люциферин: люциферины научились синтезировать, а многие люциферазы можно получить сейчас методами генной инженерии. Короче говоря, применение методов хеми- и биолюминесценции безусловно поможет пролить свет на многие загадки, еще не решенные учеными.


 

А также другие работы, которые могут Вас заинтересовать

26485. Справочно-информационная документация. Справка. Виды справок 44 KB
  Справки бывают двух основных видов: справки подтверждающие работу учебу оплату труда место проживания и т. составляемые по запросам граждан; справки по производственным вопросам составляемые по запросу руководства. Справки по запросам граждан работников выдает руководство организации с указанием специальности должности квалификации периода работы и размера заработной платы ст. Справки по запросам граждан работников как правило оформляются на бланках справок формата А5 имеющих адресные данные предприятия и трафаретный...
26486. Современное деловое письмо. Виды и оформление служебного письма 881.5 KB
  Виды и оформление служебного письма.д По содержанию и назначению письма могут быть: инструкционные содержащие указания и разъяснения подведомственным организациям; гарантийные дающие гарантии выполнения какихлибо обязательств оплаты сроков и т.; информационные содержащие полезную для адресата информацию а также просьбы напоминания предложения; рекламные рекламирующие товары и услуги; коммерческие содержащие конкретные предложения по заключению сделок; рекламационные содержащие претензии по качеству товаров или услуг;...
26487. Особенности оформления писем, предаваемых электронной почтой 49 KB
  Особенности оформления писем предаваемых электронной почтой. Напомним вначале что электронным письмом называют документ передаваемый по каналам электронной почты. Адрес в системе электронной почты состоит из имени электронного почтового ящика которое обычно совпадает с регистрационным именем пользователя и домена который описывает место компьютер или локальную систему где этот электронный ящик на ходится. В целом требования к оформлению текста документов посылаемых электронной почтой аналогичны нормам изложенным в главе 3 п.
26488. Основные понятия делопроизводства 51 KB
  Организация работы с документами – организация документооборота хранения и использования документов в текущей деятельности учреждения предприятия. Службой документационного обеспечения управления ДОУ называется структурное подразделение на которое возложены делопроизводственные операции регистрация контроль исполнения хранение использование документов и т. Структурными подразделениями службы ДОУ в зависимости от уровня организации и объема документов являются: управление делами; управление делопроизводством; канцелярия; отдел ДОУ;...
26489. Бланки документов и их оформление 49 KB
  Бланк стандартный лист бумаги на котором заранее воспроизводится информация об организации авторе от имени которого издается документ. Для организации ее структурного подразделения должностного лица устанавливают следующие виды бланков документов: общий бланк; бланк письма; бланк конкретного вида документа кроме письма. Реквизиты общего бланка документа: герб для организаций имеющих на это право; эмблема организации при наличии герба не проставляется; наименование вышестоящей организации если она имеется; наименование...
26490. ОТВЕТЫ К ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ 10 КЛАССА ПРОФИЛЬНОГО КУРСА «ОФИСНЫЕ ТЕХНОЛОГИИ» 34.5 KB
  При адресовании документа должностному лицу инициалы указываются перед фамилией. При адресовании документа физическому лицу указывают фамилию получателя затем почтовый адрес. При подписании документа несколькими должностными лицами их подписи располагают одна под другой в последовательности соответствующей занимаемой должности. При подписании документа несколькими лицами равных должностей их подписи располагают на одном уровне.
26491. Многокритериальные задачи принятия решения 18.13 KB
  Смысл обоих подходов состоит в том что один из критериев оценки альтернатив переводится в ограничение. В ряде случаев можно использовать отношение двух указанных критериев. Третий подход к синтезу критериев стоимости и эффективности приводит к построению паретовского множества. Парето развивая исследования эджварда ввел в экономику понятия оптимальности для случая нескольких критериев.
26492. Принятие решений в задачах с детерминированными целочисленными параметрами 24.47 KB
  Первая категория – задачи с неделимостями. Вторая категория – комбинаторные задачи. задачи теории расписаний упорядочение планирование согласование. Третья категория – задачи сводящиеся к задачам дискретного программирования.
26493. Основные понятия теории расписаний 29.8 KB
  Задачи теории расписаний делятся на детерминированные и стохастические. К детерминированным задачам теории расписаний относятся задачи упорядочения планирования и согласования. В этом случае задачи детерминированного календарного планирования сводятся к задачам упорядочения. В некоторых классификациях к задачам теории расписания могут быть отнесены например задачи распределения в которых множество работ с заданными временными характеристиками необходимо распределить по приборам у которых заранее установлены параметры производительности.