22031

Системы передачи с временным разделением каналов

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Напомним что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ КВАНТОВАНИЕ КОДИРОВАНИЕ. Значение шума квантования зависит от количества уровней квантования скорости изменения сигнала и от спосрба выбора шага квантования. не зависит от а } = где вероятность попадания сигнала в iю зону квантования. зависит лишь от шага квантования и не зависит от уровня сигнала.

Русский

2013-08-04

139 KB

45 чел.

Лекция №7

Системы передачи

с временным разделением каналов

                                 I. Принципы построения систем с ВРК.

  1.  Дискретизация и квантование.

          

          В системах передачи с ВРК используются цифровые сигналы, представляющие собой ту или иную импульсную кодовую последовательность, т.е. это система для передачи цифровых данных.

Напомним, что для преобразования аналогового сигнала в цифровой используются операции ДИСКРЕТИЗАЦИЯ, КВАНТОВАНИЕ, КОДИРОВАНИЕ.

Дискретизация осуществляется на основе теоремы Котельникова. Для сигналов ТЧ  с  полосой  0,3 – 3,4 кГц + 0,9 кГц (защитный интервал), т.е. fв = 4 кГц. Тактовая частота дискретизации fт = 2fв = 8 кГц. Каждый отсчёт передаётся 8 битами, значит сигнал ТЧ можно передавать со скоростью fт × 8 бит = 8×103 ×8 = 64 кбит/с.

Это и есть скорость передачи одного канала ТЧ.

Отсчёты передаются в виде восьмиразрядных двоичных чисел, получаемых при квантовании отсчётов. Т.к. квантование имеет конечное число уровней, да ещё ограничения по max и min, то очевидно, что квантованный сигнал не является точным. Разница между истинным значением отсчёта и его квантованным значением – это шум квантования. Значение шума квантования зависит от количества уровней квантования, скорости изменения сигнала и от спосрба выбора шага квантования.

2. Мощность шума квантования

Мощность шума квантования можно определить следующим образом.

Пусть плотность распределения мгновенных значений отсчётов (а). При достаточно большом числе уровней квантования М (малый шаг квантования), можно считать, что в пределах i – го

шага (а) равномерна (постоянна), т.е. имеет вид  с шириной и высотой i). Тогда для i – го участка дисперсия шума квантования:

= { т.к. i) в пределах шага постоянна, т.е. не зависит от а } =  , где  - вероятность попадания сигнала в i-ю зону квантования.

Суммарная дисперсия для всех М зон:

;

В простейшем случае при РАВНОМЕРНОМ шаге квантования, когда все шаги i одинаковы, а полная вероятность , получим  - т.е. зависит лишь от шага квантования и не зависит от уровня сигнала.

При заданном динамическом диапазоне сигнала величина шага однозначно определяет необходимое число уровней квантования М

.

  1.  Средняя мощность шумов ограничения.

Любое квантующее устройство имеет ограничения по амплитуде входного сигнала. При превышении сигналом этого порога значение квантованного сигнала не будет соответствовать реальному сигналу, т.е. будут ошибки.

Плотность распределения мгновенных значений квантуемого сигнала – чётная функция от своего аргумента (а). Средняя мощность шума ограничения:

При гауссовом законе распределения мгновенных значений (а) можно получить:

(*)  ,

где - интеграл вероятностей (имеются в справочных таблицах); Uд – действующее значение напряжения сигнала.

Имеет место сильная зависимость РШ ОГР от уровня сигнала, точнее от соотношения х= РОГР / РС. Например, уменьшение мощности сигнала вдвое приводит к уменьшению мощности РШ ОГР более чем в 4000 раз. Значит в многоканальных СП уровень квантуемых сигналов должен быть мал по сравнению с UОГР для всех компонентных каналов. В режиме «молчания» из-за изменения квантующей характеристики (влияние температуры, питания, характеристик элементов) даже небольшие шумы на входе приведут к появлению квантованного сигнала, что тоже будет шумом.

При линейной характеристике квантователя и равномерном шуме динамический диапазон – узкий.

А и  законы квантования

При равномерном шаге квантования помехозащищённость сигнала от помех будет существенно разной для отсчётов сигнала с малой амплитудой и с большой. Дело в том, что при равномерном шаге квантования шумы квантования будут одинаковыми и для малых, и для больших уровней сигнала. А значит отношение РС / РШ для малых сигналов может оказаться “плохим”. Можно было бы увеличить число уровней квантования, например, более 8 бит на выборку, но тогда придётся увеличивать скорость передачи и возрастает вероятность ошибки (с ростом М).

Помехозащищенность в телефонном канале для обеспечения высокого качества связи должна быть Азс / Рш=32,5 дБ. При постоянстве помехозащищенности  шаг квантования определяется мгновенными значениями сигнала i = uвх 12*10-0,05Аз .

Для улучшения ситуации на практике используют методы нелинейного двоичного кодирования (нелинейная кодификация). Эти методы основаны на принципах компандерного расширения динамического диапазона сигнала. Входной сигнал сжимается с помощью компрессора до уровня, приемлего для передачи по данному каналу связи, а на выходе (приёмной стороне) канала сигнал с помощью эспандера вновь восстанавливается. При этом слабые сигналы остаются почти  без изменения, а сигналы большого уровня «поджимаются». Тем самым быстрота нарастания / убывания сигналов малого и большого уровней как бы сравниваются и тогда число уровней становится почти одинаковым. Наиболее хорошо подходят для компандирования / экспандирования законы типа ехр(х) и ln(x) соответственно.

Наиболее широко используются стандартизованные законы (для симметричного двухполярного входного сигнала).

А - закон:

у=sgn (x)[z(x)/(1+lnA)],

где А = 87,6;  х=uвх/Uогр;  z=Ax; для 0 х 1/А

или z=1+lnx, для (1/А) х 1.

Этот закон используется в Европейских системах ИКМ.

Для А – закона минимальный шаг квантования 2 / 4096 = 1 / 2048, точнее .

- закон – используется в Американских системах ИКМ (D1 с = 100 и D2 с = 255).

Для - закона минимальный шаг квантования 2 / 8159.

Иногда эти законы записывают так:

Введение нелинейного квантования позволяет при той же помехозащищённости уменьшить в 1,5 раза число необходимых разрядов (используют по 8 разрядов) по сравнению с линейным законом, а значит в 1,5 раза снижается полоса необходимых частот.

; N число каналов.

Для малых уровней сигнала x < 1/А квантование носит равномерный характер с шагом   и мощность шума постоянна (т.к. шаг равномерный). Для сигналов x > 1/А квантование логарифмическое и Рш пропорциональна Рс .

Отметим, что отношение  для А – закона носит более равномерный характер в пределах динамического диапазона сигнала, чем при -законе.

На практике характеристики А или законов выполнить чисто логарифмически сложно. Поэтому их выполняют в виде линейно – ломаных кривых, составленных из сегментов для положительных и отрицательных значений сигнала. Это существенно упрощает техническую реализацию компандера и экспандера. Вершины сегментов совпадают с логарифмической кривой, а по вертикали все приращения y кривой одинаковы. В - законе используют 15 сегментов (8 для положительного сигнала и 8 для отрицательного сигнала). Если первые (от нуля) сегменты для положительного и отрицательного сигнала имеют одинаковый наклон, то они будут как бы одним «длинным» сегментом и тогда получается 15 сегментов. Для А – закона компандирования по 8 сегментов для положительного и отрицательного сигнала, из которых возле нуля по два сегмента каждой полярности общие. В результате получается 13 сегментов. Если Uмах сигнала принять за 1, то первый сегмент занимает по оси х 1/128, следующий 1/64, затем 1/16, 1/4, 1/2.

Для слабых сигналов выигрыш от компандирования для -закона  ( = 255), для А – закона .


 

А также другие работы, которые могут Вас заинтересовать

20596. Ионно-сорбционная откачка 361.5 KB
  Этот способ удаления газа получил название ионной откачки. Максимальная удельная геометрическая быстрота ионной откачки может быть определена по формуле: где μ коэффициент внедрения ионов удельная частота бомбардировки плотность ионного тока q электрический заряд; n молекулярная концентрация газа. Сорбционная активность этих пленок используется для хемосорбционной откачки. Поглощение инертных газов пленками практически не происходит что требует для их удаления применения вспомогательных средств откачки наиболее удобными...
20597. Электрические явления в вакууме 272.5 KB
  Вид элемента системы Вязкостный режим Молекулярный режим Круглое отверстие диаметром dм Отверстие произвольной формы площадью Ам2 Трубопровод диаметром d длиной l Трубопровод прямоугольного сечения авм Трубопровод с равносторонним треугольным сечением асторона м Трубопровод эллиптического сечения абольшая в малая оси м Труборовод диаметром d с коаксиально расположенным стержнем диаметром dг м а в 1 2 5 10 100   23 37 47 50 53 53  11 12 13 14 Электрические явления в вакууме Прохождение электрического тока...
20598. Понятие о вакууме и давлении 368 KB
  Вакуумсостояние газа при котором его давление ниже атмосферного. Вакуум количественно измеряется абсолютным давлением газа. Свойства газа при низких давлениях изучаются физикой вакуума являющейся разделом молекулярнокинетической теории газов. Основные допущения используемые в физике вакуума можно сформулировать в следующем виде: газ состоит из отдельных молекул; существует постоянное распределение молекул газа по скоростям т.
20599. Основы кодирования речевых сигналов 376.5 KB
  Существующие алгоритмы сжатия информации можно разделить на две большие группы: 1 алгоритмы сжатия без потерь: алгоритм ЛемпеляЗива LempelZiv LZ; RLE Run Length Encoding; кодирование Хаффмена Huffman Encoding; 2 алгоритмы сжатия с потерями: JPEG Joint Photographic Expert Group; MJPEG; MPEG Motion Picture Expert Group. MPEG ориентирован на обработку видео. Возникновение стандартов MPEG Активная разработка методов и стандартов сжатия видеоданных началась с появлением цифровых видеосистем. Но когда речь идет о...
20600. Речевые кодеки абонентских терминалов СПРС и ПСС 480.5 KB
  Обработка речи осуществляется в рамках принятой системы прерывистой передачи речи DTX. DTX управляется детектором активности речи VAD который обеспечивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях когда уровень шума соизмерим с уровнем речи. В состав системы DTX входит также устройство формирования комфортного шума который включается и прослушивается в паузах речи когда передатчик отключен.
20601. Оценка качества передачи речевых сигналов 75.5 KB
  Обычно к параметрическим вокодерным относят системы требующие скорости передачи меньшие 16 кбит с. Обычно для обеспечения меньшей скорости передачи требуется применение более сложных алгоритмов т.1 Метод кодирования Скорость передачи кбит с Стандарт Современные приложения ИКМ 64 МСЭТ G.
20602. Модемы систем подвижной связи 649.5 KB
  Однако объем передачи данных по таким сетям имеет тенденцию к быстрому увеличению.3 DQPSK n 4 Требуемое отношения сигнал шум дБ 9 16 Скорость преобразования речи Кбит с 13 65 8 Алгоритм преобразования речи RPE LTP VSELP Типовой радиус соты км 0535 0520 Технологическое преимущество цифровой сотовой связи позволяет увеличивать емкость сетей снижать стоимость и повышать надежность передачи данных. К таким решениям можно отнести: построение сетей GSM на принципах модели открытых систем и интеллектуальных сетей; применение эффективных...
20603. Понятие о защите информации от несанкционированного доступа 109 KB
  Говорить о безопасности сотовой связи в общем нельзя. Если бы не было необходимости в идентификации то он получил бы вместе с аппаратом и доступ к счету жертвы у оператора связи. Принцип работы A3 известен только операторам связи а также разработчикам и производителям всевозможного сотового оборудования. Шифрование данных У любого стандарта сотовой связи есть один большой недостаток.
20604. Перспективы развития СПРС и ПСС – переход к системам 3-го поколения 236.5 KB
  Перспективы развития СПРС и ПСС – переход к системам 3го поколения Прошло немногим более двух десятилетий с момента появления первых мобильных телефонов но мобильная связь уже подверглась существенным изменениям. Cистемы первого поколения основанные на аналоговом принципе использовались исключительно для телефонной связи и лишь впоследствии обзавелись некоторыми базовыми сервисами. Cистемы второго поколения включая стандарт GSM предоставляют улучшенное качество передачи и защиту сигнала дополнительные сервисы низкоскоростную...