22041

Функции, выполняемые коммутатором

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

маршрутизация трансляция от точки к точке доступ при test 1 1 2 3 2 3 консолидация сортировка ввод вывод Методы кросскоммутации и взаимодействие сетей SDH. Емкости коммутаторов могут быть разные до 4096 ·40096 соединений Мультиплексоры...

Русский

2013-08-04

144 KB

7 чел.

Лекция 18

Продолжение Л.17

Итак, функции, выполняемые коммутатором:

  1.  Маршрутизация (routing) , производимая на основе информации в маршрутном заголовке РОН соответственного VC.
  2.  Объединение (консолидация) (consolidation/hubbing) VC-в в режиме концентратора (хаба).
  3.  Трансляция (translation) потока от точки к нескольким точкам (мультиточкам), (point-to-multipoint), осуществляется в режиме связи «точка-мультиточка» или иногда мультикастинг.
  4.  Сортировка (или перегруппировка) (groomming) VC-в, осуществляемая с целью создания нескольких упорядоченных по какому-либо признаку контейнеров, потоков.
  5.  Доступ к VC-ру (test access), осуществляемый при тестировании оборудования.
  6.  Ввод/вывод (drop/insert), VC-в в режиме мультиплексора ввода/вывода.

                                 маршрутизация

                       трансляция от точки к точке

                                                        доступ при test

1                                                                     1       2        3

       2

3

                           консолидация

                              сортировка

                                                     ввод/вывод

Методы кросс-коммутации и взаимодействие сетей SDH.

Коммутатор может рассматриваться как некоторая многопортовая сеть, связывающая три вида портов: линейные порты ввода/вывода (in), линейные порты вывода/ввода (out) и трибные порты ввода/вывода (trib). Ядром такого коммутатора является неблокруемая, полнодоступная матрица размером n×n.

        1                                                                                  

Линейные                                                                                                                1

Порты                                                                                                                       2  линейные порты

 in                                                                                                out

         n                                                                                 n

                     1          2              n-1              n

                               трибные порты trib

Матрица управляется микроконтроллером и обеспечивает в общем случае коммутацию сигналов следующих уровней:

TU-1(1,5 или 2 мбит/с)

TU-2(6 мбит/с)

TU-3(34 или 45 мбит/с)

AU-4(140 мбит/с).

Возможна коммутация как в одном направлении, так и в обоих (передача-прием).

Проходная in-out; out-in;

Внутренняя коммутация in-trib; trib-in; out-trib; trib-out

Локальная trib-trib

Точка-мультиточка in2 →trib123  и т.п. Т.е. все ранее перечисленные типы коммутации типа «точка-все точки» – родкастинг (broadcasting). Емкости коммутаторов могут быть разные (до 4096 ·40096 соединений)

Мультиплексоры с мощными коммутаторами дают возможность организовывать взаимодействие элементов сети SDH  и тем самым организовывать различные структуры самой сети.

Во-первых, можно осуществлять связь двух колец SDH с перегрузкой трафика с одного кольца на другое. Причем эти кольца могут быть связаны с собой одним или двумя MUX.

Во-вторых, MUX, рассматриваемый как автономный узел связи, может работать как концентратор с перегрузкой потоков на ТРИ (трехлучевая звезда) или на четыре (4-х лучевая звезда) направления. Это позволяет использовать мультиплексоры и в ячеистых структурах, каковым обычно являются телефонные сети общего пользования. В сетях общего пользования кольцевые структуры обычно менее эффективны, т.к. в сегментах может быть очень разное сочетание скоростей потоков.

Блочная структура позволяет конфигурировать аппаратуру для конкретных целей. Например, в мультиплексорах типа STM-4 для увеличения количества переключаемых соединений можно вставить 2 дополнительных коммутатора уровня STM-1, каждый из которых сам может коммутировать порядка 126-252 первичных канала по 2 мбит/с каждый.

Важно, что применение кросс-коммутаторов позволяет связать в единую сеть и сегменты различных сетей PDH, SDH, SONET. Характерным примером таких коммутаторов класса SDXC 4/3/1 являются коммутаторы Т::DAX компании ECI и 1641 SX компании ALKATEL.

Правда такие коммутаторы выпускаются в виде отдельных устройств и применяются только по необходимости.

Коммутатор Т::DAX поддерживает Европейские стандарты PDH и SDH и Американские стандарты PDH Asynk и SDH SONET 2 мбит/с (или 1,5 мбит/с); 34 или 45 мбит/с; STM-1; STS-1,3; OS-3. Его коммутирующая емкость: основная 1792·2 мбит/с

расширенная 3584· 2 мбит/с.

Коммутатор 1641 SX также поддерживает вышеназванные стандарты и позволяет местно или дистанционно обрабатывать потоки с суммарным эквивалентом STM-1 портов. Количество этих портов, эквивалентных каждый потоку STM-1, может быть 48; 112 или 192 с квадратной матрицей коммутации. Со специальной матрицей число портов, эквивалентных STM-1 может быть 224 или 560. В конфигурации 48 STM-1 портов он позволяет, например, коммутировать 448 2-х мегабитных каналов, плюс 24 канала по 34 мбит/с и плюс 16 каналов по 140 мбит/с и плюс 1 канал STM-1.

Этот коммутатор может использоваться в различных конфигурациях сети и может применяться как шлюз между сетями PDH и SDH и в сетях типа «звезда». Или может использоваться как шлюз между сетями SDH и SONET.                                                            

   Сеть PDH             Сеть SDH                                  SDH                       SONET

Звенья PDH                                              STM-N             STM-N

                1641 SX                                                       1641SX                 OC-M

                                             STM-N

      АТС                                                                           “шлюз”  SDH-SONET

     «Шлюз» между сетями PDH и SDH

Также этот коммутатор может быть использован как мультиплексор более высокого уровня, либо как многопортовый концентратор для связи с узловыми MUX ячеистой структуры сети.

                                MUX

  MUX                                              MUX

                                                                                  1641SX

1641 SX вместо MUX

                      1641SX

                                                1641SX в ячеистых сетях SDH

    1641SX                     1641SX          Коммутатор 1641SX фирмы

                                                                         Alkatel

          1641SX          1641SX

                    Топология сетей SDH

При проектировании сети связи SDH нужно пройти несколько этапов в зависимости от конкретных условий Т3. Также как выбор топологии сети, выбор оборудования узлов и промежуточных пунктов, формирование сетей управления и синхронизации.

При выборе топологии сети обычно пользуются базовыми стандартными топологиям, из которых составляют сеть в целом.

  •  Топология «точка-точка»   А                        В

Эта топология чаще всего исполняется с помощью терминальных мультиплексоров (ТМ).

                         основной

     трибы        TM                                                                   трибы

       А                 резервный                                    В

Если прием и передача ведется по одному из агрегатных каналов (оптическому или электрическому), то второй агрегатный канал может использоваться в качестве резервного. В случае повреждения основного канала за миллисекунды система переключается на резервный. Такая система защиты называется «Резервирование 1+1». Такая топология, например, используется в трансокеанских системах. Можно использовать и при отладке отдельных сегментов сложной сети.

  •  Топология «последовательная линейная цепь»

А   В      С     D    E

                                          TM                                             TM            TM

                                                                             

                                                                    TDM

                                               Система без резервирования

                                                                      ТМ

                                                                                      Терминальный MUX

                                    TDM    (ADM)

                                                            MUX ввода/вывода, т.е.ADM

Последовательная линейная цепь типа «уплощенное кольцо с резервирование 1+1»

Такая структура обычно используется в сетях с малым трафиком и имеется необходимость ответвления в некоторых точках (узлах) сети.

  •  Топология «звезда»

При необходимости сбора каналов относительно малой емкости от удаленных пользователей с целью их подключения к центральному узлу, мощной цифровой АТС в сети SDH можно использовать несколько видов мультиплексоров, которые совместно будут выполнять роль ХАБА (концентратора) в топологии типа «звезда».

                          ADM              - MUX ввода/вывода

                         SMUX                      SDH - мультиплексер

        

                          MUX                          - мультиплексеры PDH

  •  Топология «кольцо»

Эта топология широко используется в сетях первых двух уровней SDH (155 и 622 мбит/с). Имеются мультиплексоры с двумя парами агрегатных выходов (например Alkatel 1651SM 4·STM-4) т.е. 4 выхода. С ними можно организовывать двойное кольцо, т.е. с резервированием 1+1.

   


 

А также другие работы, которые могут Вас заинтересовать

30837. Потенциал действия и его фазы. Изменение проницаемости калиевых, натриевых и кальциевых каналов в процессе формирования потенциала действия 30 KB
  При нанесении раздражения увеличивается проницаемость мембраны для натрия. За счет этого процесса происходит уменьшение полярности мембраны по сравнению с исходным с 70 мВ до 4050 мВ. Критический уровень деполяризации КУД это такая величина разности потенциалов 4050 мВ при которой активируется большое количество потенциалзависимых быстрых натриевых каналов проницаемость мембраны для натрия становится максимальной и перестает быть зависимой от силы раздражителя. Возникает лавинообразный входящий натриевый ток который быстро доли...
30838. Раздражимость и возбудимость 44 KB
  По биологической значимости: адекватные присущи для восприятия данному виду рецептора неадекватные не являются естественными с точки зрения природы или силы раздражения. Законы раздражения Действие раздражителя описывается несколькими законами: 1. Закон силы раздражения: Чем больше сила раздражения тем до известных пределов сильнее ответная реакция. Но есть сила раздражения для любого биологического раздражителя которая способна вызывать mx эффект оптимальная сила оптимум частоты и силы раздражения.
30839. Действие постоянного тока 29.5 KB
  Под катодом замыкая цепь мы по существу вносим мощный отрицательный заряд на наружную поверхность мембраны. Это приводит к развитию процесса деполяризации мембраны под катодом. При замыкании цепи происходит внесение мощного положительного заряда на поверхность мембраны что приводит к гиперполяризации мембраны. КУД смещается вслед за потенциалом мембраны но в меньшей степени.
30840. Строение биомембран 52 KB
  Основу мембраны составляет липидный бислой двойной слой амфифильных липидов которые имеют гидрофильную головку и два гидрофобных хвоста . В липидном слое липидные молекулы пространственно ориентированы обращены друг к другу гидрофобными хвостами головки молекул обращены на наружную и внутреннюю поверхности мембраны. Липиды мембраны: фосфолипиды сфинголипиды гликолипиды холестерин. К ним относятся рецепторные белки белки адгезии; трансмембранные пронизывают всю толщу мембраны причем некоторые белки проходят через...
30841. Трансмембранный обмен 28.5 KB
  Осмос когда через мембрану движется растворитель из зоны с меньшей концентрацией в зону с большей концентрацией.Переносчики белки которые тем или иным способом переносят вещества через мембрану за счет конформации пространственного преобразования молекул переносчика сальтообразно. Активный транспорт транспорт веществ через мембрану который осуществляется против градиента концентрации и требует значительных затрат энергии. Он вмонтирован в мембрану.
30842. Ионные каналы 85.5 KB
  Ионные каналы Ионный канал состоит из нескольких субъединиц их количество в отдельном ионном канале составляет от 3 до 12 субъединиц. Ионные каналы работают по механизму облегченной диффузии. каналам пропускающим только один вид ионов натриевые каналы калиевые каналы кальциевые каналы анионные каналы. Некоторые из ионных каналов неселективные например каналы утечки .
30843. . Воспринимать информацию переводить информацию раздражителя на биологический язык клетки. 21.5 KB
  Воспринимать информацию переводить информацию раздражителя на биологический язык клетки. Обрабатывать информацию т. Кодировать информацию превращать информацию в форму удобную для хранения в мозге.
30844. Рецепторная функция нейронов 30 KB
  Сенсорные рецепторы. Клеточные химические рецепторы. Хеморецепторы нейронов к большому числу специфических и неспецифических химических раздражителей внутренней и внешней среды. Сенсорные рецепторы это нервные окончания чувствительные участки нейрона которые способны воспринимать другие нехимические виды раздражения.
30845. Электрогенез нейронов 25.5 KB
  Вызванная активность возникает под действием раздражителей Исходно все нейроны могут быть разделены на: спонтанноактивные фоноактивные нейроны молчащие нейроны нефоноактивные нейроны. Фоноактивные нейроны это такие нейроны которые продуцируют потенциалы действия спонтанно без внешних раздражителей вследствие особенностей своего обмена веществ. Молчащие нейроны это такие нейроны которые без внешнего стимула не отвечают потенциалом действия. Спонтанноактивные нейроны тоже меняют свою активную деятельность под действием...