22105

Общие правила подчинения мест регулярного выражения

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Определим вначале внутренние состояния в которые переходит автомат из состояния 0 при подаче на его вход сигнала x1. Следовательно автомат из состояния 0 под действием сигнала x1 переходит в состояние 2. Аналогично сигнал x2 переводит автомат из состояния 0 в состояние 1 т. Отсюда получаем следующую отмеченную таблицу переходов: yg e e e e e e y1 e y2 xj ai 0 1 2 3 4 5 6 7 8 x1 2 2 4 2 6 2 7 7 2 x2 1 1 3 1 5 1 8 8 1 yg E e e y1 e y2 xj ai A0 a1 a2 a3 a4 a5 x1 A1 a2 a3 a4 a4 a1 x2 A0 a0 a0 a5 a5 a0 Из построенной таблицы видно что из...

Русский

2013-08-04

54.5 KB

0 чел.

Лекция 8

Сформулируем теперь общие правила подчинения мест регулярного выражения.

  1.  Индекс места перед любыми скобками распространяется на начальные места всех дизъюнктивных членов, записанных в этих скобках.
  2.  Индекс конечного места, любого дизъюнктивного члена, заключенного в любые скобки, распространяется на место, непосредственно следующее за этими скобками.
  3.  Индекс места перед итерационными скобками распространяется на место, непосредственно следующее за этими скобками.
  4.  Индекс конечного места любого дизъюнктивного члена, заключенного в итерационные скобки, распространяется на начальные места всех дизъюнктивных членов, заключенных в эти итерационные скобки.
  5.  Индексы мест, слева и справа от которых стоят буквы, никуда не распространяются.
  6.  В автоматах многократного действия индекс конечного места всего выражения распространяется на те же места, на которые распространяется индекс начального места. Это правило справедливо только в тех случаях, когда событие представлено регулярным выражением так, что оно не содержит многократно повторяющихся слов, входящих в заданное событие. И тогда организация автомата многократного действия осуществляется путем разметки.

Смысл приведенных правил подчинения мест сводится к следующему: основному месту с индексом i подчиняется место j, если автомат, находящийся в состоянии i, может принять букву входного алфавита, записанную непосредственно справа от места j.

По размеченному регулярному выражению теперь можно составить таблицу переходов автомата. Однако перед построением таблицы целесообразно уменьшить число индексов основных мест, а следовательно и число внутренних состояний автомата.

На этом первом этапе минимизации внутренних состояний можно пользоваться следующим правилом:

Если несколько предосновных мест отмечено одинаковой совокупностью индексов и справа от этих мест записаны одинаковые буквы, можно отметить одинаковыми индексами.

В полученном нами выражении основные места 2, 4 и 7 можно отметить общим индексом, т.к. слева от каждого из этих мест записана буква x1, а предосновные места, предшествующие этой букве, имеют одинаковую совокупность индексов (0, 1, 3, 6, 11). Теперь с учетом этого проведем новую разметку.

S = { x2 v x1 x2 v x1 x1 x2} x1 x1 x1 { x1 } x2  

     0       1         2    3        2    4    5        2   6    7       8        9

          0 0    2        0    2    4        0     2   6       7        7

 1 1       1                    1                  8        8

 3 3       3                    3

 5 5       5                    5

 9 9              9                    9

На этом первый этап минимизации (минимизации по регулярному выражению) закончен.

Составим теперь отмеченную таблицу переходов автомата. Определим вначале внутренние состояния, в которые переходит автомат из состояния 0 при подаче на его вход сигнала x1. Для этого найдем все предосновные места, содержащие индекс 0, справа от которых записана буква x1. Таких мест в выражении три. Все основные места, расположенные за этой буквой x1, отмечены индексом 2. Следовательно, автомат из состояния 0 под действием сигнала x1 переходит в состояние 2. Аналогично, сигнал x2 переводит автомат из состояния 0 в состояние 1, т.к. за предосновным, содержащим индекс 0, после буквы x2 расположено основное место с индексом 1. Таким же образом  определяются переходы автомата их других внутренних состояний. Сигнал y1 выдается после поступления подряд трех букв x1, т.е. в состоянии 6, а сигнал y2 – после x2, следующей за серией из трех и более букв, т.е. в состоянии 8. В остальных случаях выдается пустая буква е. Отсюда получаем следующую отмеченную таблицу переходов:

yg

e

e

e

e

e

e

y1

e

y2

xj\ai

0

1

2

3

4

5

6

7

8

x1

2

2

4

2

6

2

7

7

2

x2

1

1

3

1

5

1

8

8

1

yg

E

e

e

y1

e

y2

xj\ai

A0

a1

a2

a3

a4

a5

x1

A1

a2

a3

a4

a4

a1

x2

A0

a0

a0

a5

a5

a0

Из построенной таблицы видно, что из состояний 0, 1,3 и 5 автомат сигналами x1 и x2 переводится в одинаковые состояния (2 и 1). Кроме того, все перечисленные состояния отмечены одинаковыми выходными сигналами. Поэтому состояния 0, 1, 3 и 5 можно объединить в одно состояние, обозначив его как а0. Введем также обозначения: 2 – а1; 4 – а2; 6 – а3; 7 – а4; 8 – а5. Тогда получим упрощенную таблицу переходов автомата. В этой таблице из состояний а3 и а4 под действием входных сигналов х1 и х2 автомат переходит в одинаковые состояния а4 и а5. Но объединять эти состояния нельзя, т.к. отмечены разными выходными сигналами. По этой же причине нельзя объединять состояния а0 и а5. Объединение состояний и составляет второй этап минимизации, причем объединяются только такие состояния, которые отмечены одинаковыми выходными сигналами, и из которых под действием одинаковых входных сигналов происходит переход в одинаковые состояния. Очевидно, у таких состояний должны совпадать столбцы таблицы переходов.

Рассмотрим еще один пример абстрактного синтеза автомата. Найдем таблицу переходов автомата сравнения чисел, условия работы которого заданны регулярными выражениями

S3 = |{|x2|}|xs|; S1 = |[|x2|v|x01|v|x10|}|x01|{|x2|}|xs|;

S2 = |{|x2|v|x01|v|x10|}|x10|{|xr|}xs

Регулярные выражения событий S1 и S2 содержат одинаковые сомножители в итерационных скобках, перед которыми расположено место с индексом 0. Поэтому в обоих выражениях основные места внутри итерационных скобок отмечены одинаковыми индексами (3, 4 и 5). Индекс конечного места каждого выражения распространяется на начальные места всех регулярных выражений, т.к. в автоматах многократного действия за словом любого события, например S1, может быть подано слово любого другого события, т.е. S2 v S2 v S3. В размеченных выражениях можно объединить места с индексами 4, 6 и 5,9:

S3 = |{|x2|}|xs|; S1 = |[|x2|v|x01|v|x10|}|x01|{|x2|}|xs|;

S2 = |{|x2|v|x01|v|x10|}|x10|{|xr|}xs

По размеченному выражению составим отмеченную таблицу переходов.

yg

e

e

y3

e

e

e

e

y1

e

y1

e

e

e

e

0

1

2

3

4

5

6

7

8

9

1v3

3v6

3v8

*

X

1v3

1

1v3

3

3v6

3v8

6

1v3

8

1v3

1v3

3v6

3v8

*

X

4

*

4

4

4

4

*

4

*

4

4

4

4

*

X

5

*

5

5

5

5

*

5

*

5

5

5

5

*

X

2

2

2

*

7

9

7

2

9

2

2

7

9

*

При составлении таблицы следует учитывать, что для разных регулярных выражений автомат под действием одних и тех же входных сигналов переходит в разные состояния. Эти внутренние состояния будем отмечать множеством индексов основных мест. Например. В событии S3 переход из состояния 0 в состояние 1 происходит под действием сигнала x2 а в S1 под действием этого же сигнала из состояния 0 автомат переходит в состояние 3. Поэтому, внутреннее состояние, в которое автомат переходит под действием x2 из состояния 0, будем называть множеством из двух индексов 1 v 3. Аналогично получается переход из состояний 2, 7 и 9 под действием x2, а также переход из состояния 4 и 5 в состояния 3 v 6 и 3 v 8 соответственно под действием x2. При заполнении таблицы получается свободные клетки там, где переходы в автомате не определенны. Такие клетки будем отмечать звездочкой *, которую следует рассматривать как индекс некоторого внутреннего состояния. Таблица переходов составляется не только для состояний, отмеченных индексами основных мест регулярного выражения, но и для состояний, отмеченных множеством индексов. Для заполнения колонок для таких состояний достаточно образовать дизъюнкцию таких индексов, которые расположены в колонках, отмеченных индексами, входящими в множества. Например. Для заполнения колонки 1 v 3 образуем дизъюнкцию индексов расположенных в колонках 1 и 3. Поскольку состояния 1, 3, 6 и 8 отмечены пустой буквой e, то и состояния 1 v 3, 3 v 6, 3 v 8 также отмечаются буквой е.


 

А также другие работы, которые могут Вас заинтересовать

50052. ЯВЛЕНИЕ САМОИНДУКЦИИ 99 KB
  Цель работы: ознакомиться с явлением самоиндукции; изучить зависимость постоянной времени электрической цепи состоящей из катушки индуктивности и омического сопротивления от величины сопротивления; определить величины индуктивности катушки и магнитной проницаемости сердечника соленоида. Найдём функциональную зависимость силы тока от времени. 12 Величину t=L R называют постоянной времени цепи которая равняется времени за которое при разрядке...
50053. Изучение команд меню Corel Draw10 117.5 KB
  Команда предназначена для загрузки в активный документ векторного растрового или текстового файла. Существует возможность загрузки нескольких десятков форматов и этот набор охватывает большинство наиболее распространенных графических и текстовых форматов. Позволяет сохранить информацию активного документа в различных форматах векторных растровых и текстовых. Текстовая информация может быть экспортирована либо вся либо из текущей страницы при включенном режиме Export this pge only Экспортировать лишь текущую страницу.
50054. Определение теплоемкости твердого тела 116 KB
  Цель работы: 1 измерение зависимости повышения температуры исследуемого образца в муфельной печи от времени; 2 вычисление по результатам измерений теплоемкости исследуемого образца. В любой момент времени количество тепла поступившее от электронагревателя идет на нагрев установки и на излучение в окружающую среду: [2] Величина Qпотерь пропорциональна разнице температур между печью и окружающим воздухом и может быть принята равной нулю в начальный момент времени. Прямое определение величин в уравнении [2] в начальный момент...
50055. Измерение параметров емкостей в цепи переменного тока 195.5 KB
  Плеханова технический университет Кафедра Общей и технической физики лаборатория электромагнетизма Измерение параметров ЕМКОСТЕЙ в цепи переменного тока Методические указания к лабораторной работе № 6 САНКТПЕТЕРБУРГ 2009 УДК 531 534 075. Цель работы: Определение импеданса сдвига фаз и измерение емкости на разных частотах в резистивноемкостной цепи. При работе на переменном токе с реактивными элементами в цепи индуктивность емкость следует обязательно учитывать их реактивный характер проводимости. Кроме того реактивные элементы...
50057. ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ МАХОВОГО КОЛЕСА МЕТОДОМ КОЛЕБАНИЙ 286.5 KB
  Цель работы: Ознакомление с методом измерения моментов инерции тел обладающих осевой симметрией. Основные теоретические положения к данной работе (основополагающие утверждения: формулы, схематические рисунки)
50058. ВЫБОР СПЕЦОДЕЖДЫ, СПЕЦОБУВИ И ДРУГИХ СРЕДСТВ ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ 108.5 KB
  Изучить Правила обеспечения работников специальной одеждой специальной обувью и другими средствами индивидуальной защиты принятыми Постановлением Министерства труда и социального развития РФ от 18 декабря 1998 г. Составить личную карточку учета выдачи средств индивидуальной защиты по представленной форме в соответствии с заданием. Типовые отраслевые нормы бесплатной выдачи специальной одежды специальной обуви и других средств индивидуальной защиты выдаются преподавателем или берутся из справочника по охране труда в сельском хозяйстве...
50059. Рефрактометр Рэлея 260.5 KB
  Элемент щели dx посылает в направлении φ волну с амплитудой пропорциональной dx. При этом будем считать что угол φ достаточно мал sin φ ≈ φ и что в правой щели искусственно создана дополнительная разность хода Δ одинаковая для всех ее элементов это позволит написать смещение интерференционных полос используемое для измерений в интерферометреРэлея. Интегрируя 3 найдем 4 где а расстояние между щелями b ширина щели. Первый из них описывает распределение интенсивности в дифракционной картине Фраунгофера от одной щели.
50060. Техніка пересувань футболістів у нападі та захисті 21 KB
  Футболіст пересувається короткими кроками і завжди повинен бути готовий до миттєвої зупинки або зміни темпу й напрямку руху. Найважливіше під час вистрибування вибрати відповідне місце відштовхування врахувавши швидкість та висоту руху м’яча. Ефективний спосіб пересувань – зміна напрямку руху. Для того щоб змінити напрямок руху з мінімальною втратою часу футболісти застосовують повороти: переступанням стрибком на опорній нозі.