22110

J-K триггер (универсальный триггер)

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Триггером JK типа называют автомат Мура с двумя устойчивыми состояниями и двумя входами J и K который при условии J K = 1 осуществляет инверсию предыдущего состояния т. при J K = 1 Qt1 = Qt а в остальных случаях функционируют в соответствии с таблицей истинности RS триггера при этом вход J эквивалентен входу S а вход K входу R. Этот триггер уже не имеет запрещенной комбинации входных сигналов и его таблица истинности т.

Русский

2013-08-04

24 KB

1 чел.

Лекция 13

  1.  J-K триггер (универсальный триггер).

Триггером J-K типа называют автомат Мура с двумя устойчивыми состояниями и двумя входами J и K, который при условии J * K = 1 осуществляет инверсию предыдущего  состояния (т.е. при J * K = 1, Q(t+1) = Q(t)), а в остальных случаях функционируют в соответствии с таблицей истинности R-S триггера, при этом вход J эквивалентен входу S, а вход K - входу R. Этот триггер уже не имеет запрещенной комбинации входных сигналов и его таблица истинности, т.е. зависимость Q(t+1) = f[J, K, Q(t)] имеет вид:

J

K

Q(t)

Q(t+1)

0

0

0

0

0

0

1

1

0

1

0

0

0

1

1

0

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

0

По этой таблице можно построить диаграмму Вейча для Q(t+1), которую можно использовать для минимизации, и матрицу переходов.

Триггер J-K типа относится к разряду универсальных триггеров, поскольку на его основе путем несложной внешней коммутации можно построить R-S, D- и T- триггера.

Например, R-S триггер получается из триггера J-K типа простым наложением ограничения на комбинацию входных сигналов J = K = 1, т.к. эта комбинация является запрещенной для R-S триггера.

Счетный триггер на основе J-K триггера получается путем объединения входов J и K, т.е.:

Триггер задержки (D- триггер) строится путем подключения к входу K инвертора, на который подается тот же сигнал, что и на вход J:

В этом случае вход J выполняет  функцию входа D, а все устройство в целом реализует таблицу переходов D-триггера.

В интегральной схемотехнике применяются только тактируемые (синхронные) J-K триггера, которые при C = 0 сохраняют свое состояние, а при C= 1 работают как асинхронные J-K триггера.


 

А также другие работы, которые могут Вас заинтересовать

22352. Представление аналитических функций рядами 464 KB
  Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.
22353. Ряды Лорана 269.5 KB
  Поэтому обе формулы можно объединить в одну: 7 Полученное разложение 6 функции fz по положительным и отрицательным степеням za с коэффициентами определяемыми по формулам 7 называется лорановским разложением функции fz с центром в точке a; ряд 2 называется правильной а ряд 4 – главной частью этого разложения. и в нашем рассуждении могут быть взяты сколь угодно близкими к r и R а q может сколь угодно мало отличаться от 1 то разложение 6 можно считать справедливым для...
22354. Примеры особых точек 2.06 MB
  Функции имеют в начале координат устранимую особую точку. Функции имеют начале координат существенную особую точку. Проверим справедливость теоремы Сохоцкого для функции . Целые функции.
22355. Бесконечно удаленная точка 682.5 KB
  Пусть функция аналитична в некоторой окрестности бесконечно удаленной точки кроме самой точки . В этом случае функция очевидно ограничена и в некоторой окрестности точки . Пусть функция аналитична в полной поскости. Но тогда функция ограничена во всей плоскости: для всех имеем .
22356. Приложение теории вычетов 797 KB
  Напомним что мероморфной называется функция fz все конечные особые точки которой являются полюсами. в любой ограниченной области такая функция может иметь лишь конечное число полюсов то все ее полюсы можно пронумеровать например в порядке не убывания модулей: Будем обозначать главную часть fz в точке т. Если мероморфная функция fz имеет лишь конечное число полюсов и кроме того является либо правильной регулярной ее точкой либо полюсом то эта функция представляется в виде суммы своих главных частей 3 и...
22357. Обращение степенных рядов 217.5 KB
  Выберем число столь малым чтобы в круге функция обращалась в нуль только в точке . Каждое значение из круга функция принимает в круге только один раз. В самом деле на окружности выполняется неравенство и по теореме Руше функция имеет в круге столько же нулей сколько и функция т. Итак пусть тот круг в котором функция принимает каждое значение ровно один раз а область плоскости ограниченная кривой кривая является простой кривой т.
22358. Аналитическое продолжение 680.5 KB
  Представляет большой интерес вопрос нельзя ли расширить область определения этой функции сохранив регулярность. Функцию регулярную в области содержащей и совпадающую с регулярной в области называют аналитическим продолжением функции на область . Если аналитическое продолжение регулярной функции в данную более широкую область определения возможно то оно возможно лишь единственным образом. В самом деле пусть существуют два аналитических продолжения и функции регулярной в области в одну и туже область .
22359. Римановы поверхности 55 KB
  Пусть дана многозначная аналитическая функция fz определенная в области D комплексной плоскости. Условимся рассматривать области Dk из которых в процессе аналитического продолжения строится область D как отдельные листы изготовленные в таком количестве экземпляров сколько значений имеет функция в данной области D. Пусть области D0 и D1 имеют общие части причем в одних из этих частей значения f0z и f1z совпадают а в других различны. Поверхность образованную из отдельных областей определения ветвей многозначной аналитической...
22360. Конформные отображения. Понятие конформного отображения 1.86 MB
  Предположим что задано непрерывное и взаимно однозначное отображение области D на некоторую область . Геометрически эта замена равносильна замене отображения отображением 3 которое называется главной линейной частью отображения 1. Отображение 3 можно переписать в виде 4 где: 5 не зависят от x и y. Отображение 4 представляет собой так называемое линейное аффинное преобразование плоскости .