22143

Механические схемы деформаций

Реферат

Производство и промышленные технологии

Схемы напряжений. Как изменяется НДС одной и той же частицы во времени показывают: траектория деформирования; траектория нагружения; графическая зависимость показателя жесткости схемы напряжений K от времени; графическая зависимость показателя Лоде для напряжений νσ от времени для для деформаций ν от времени. Аналогично можно представить шестимерное пространство напряжений. Вектор напряжений координаты конца которого равны σx σy σz τxy τyz τzx опишет пространстве напряжений линию называемую траекторией нагружения.

Русский

2013-08-04

105.5 KB

38 чел.

Тема №2 «Механические схемы деформаций»

  1.  Схемы деформаций. Схемы напряжений. Механические схемы деформаций.
  2.  Влияние механической схемы деформации на удельную силу деформирования и пластичность металла.

  1.  Заготовка подверженная пластическому деформированию в операции ОМД находится  обычно в неоднородном и нестационарном напряженно-деформированном состоянии (НДС). Это означает если заготовку представить в виде совокупности взаимодействующих материальных частиц, то НДС одной и той же частицы с течением времени изменяется, а в фиксированный момент времени НДС двух различных частиц неодинаково.

Как изменяется НДС одной и той же частицы во времени показывают:

траектория деформирования;

траектория нагружения;

графическая зависимость показателя жесткости схемы напряжений – K от времени;

графическая зависимость показателя Лоде для напряжений νσ от времени, для для деформаций ν от времени.

Все перечисленные выше зависимости характеризуют так называемую историю нагружения частицы – историю «ее пластической жизни».

Показатель Лоде:

        и т.д.

следовательно

Коэффициент жесткости

– мгновенное напряжение течения металла

– среднее напряжение

   следовательно  

Если представить себе шестимерное пространство деформаций с осями: x; y; z; oexy; oeyz; oezx, то деформацию частицы в фиксированный момент времени можно представить вектором с началом в 0 и концом с координатами (εx, εy, εz, exy, eyz, ezx). Положение конца этого вектора с течением времени будет изменяться и он опишет в этом воображаемом пространстве так называемую траекторию деформации.

Аналогично, можно представить шестимерное пространство напряжений. Вектор напряжений, координаты конца которого равны (σx, σy, σz, τxy, τyz, τzx), опишет пространстве напряжений линию называемую траекторией нагружения.

Траектории нагружения и деформации показывают, как изменяется НДС частицы во времени.

В фиксированный момент времени НДС частицы будет соответствовать пара векторов – вектор деформации и вектор напряжения.

НДС в фиксированный момент времени всех частиц составляющих заготовку будет характеризоваться множеством пар векторов деформации и напряжений, последнее не совсем удобно. Поэтому для характеристики НДС заготовки в целом ввели понятие механической схемы деформации.

Механической схемой деформации называют превалирующую по объему заготовки (качественно одинаковую для большинства частиц) совокупность схемы деформаций  и схемы напряжений в главных значениях.

Механическую схему принято изображать графически: (например)

Укажем возможные схемы деформаций и напряжений.

Количество возможных схем деформации ограничивается законом постоянства объема металла при пластической деформации.

Соотношение между величинами главных деформаций отражает показатель  Лоде для деформированного состояния:

При сдвиге ;

В схемах растяжения , при простом растяжении ;

в схемах сжатия  при простом сжатии .

Напомним, что если ε >0 то волокна испытывают растяжение, если ε <0  сжатие.

Возможные схемы главных напряжений следует из всевозможных сочетаний трех некомпланарных векторов напряжений:

  •  две одноосные

три двухосные схемы: две одноименные и одна разноименная

  •  четыре трехосные схемы: две одноименные и две разноименные:

Всего 9 видов схем главных напряжений

Одноосная схема напряжений с одним растягивающим напряжением сочетается только со схемой простого растяжения.

Одноосная схема напряжений с одним сжимающим напряжением сопровождает только схему простого сжатия. Итого 2 механические схемы.

Каждый из семи видов оставшихся схем напряжений может быть при любой из трех схем деформаций. Всего механических схем -23 штуки.

Напомним, что схема напряжений (любая из 7) имеет место при пластической деформации частицы, если , т.е. ; ; .

Механическая схема деформации отображает схему действующих сил и определяет характер формоизменения.

Операции ОМД механически сравнимы, если они имеют одну и ту же механическую схему деформации.

Одна лишь схема главных напряжений не определяет  схему деформаций.

Для построения последней нужно построить схему компонент девиатора напряжений.

Компоненты девиатора напряжений предопределяют формоизменение и обладают тем же свойством что и компоненты главных деформаций. Возможное количество схем девиаторов напряжений, как и деформаций – 3.         Это следует из:.

Примеры:

     

                  

    

                 

  1.  Чем меньшую роль в схеме главных напряжений играют растягивающие напряжения и чем большую роль играют сжимающие, тем большую способность к пластической деформации проявляет металл.

При одноименных схемах главных напряжений (сжимающих или растягивающих) удельная сила деформирования больше чем в условиях разноименных схем.

Почему микротрещины залечиваются более интенсивно в условиях сжимающих напряжений почитать самостоятельно.


 

А также другие работы, которые могут Вас заинтересовать

57844. Тригонометричні функції 493.5 KB
  Мета уроку: узагальнити і систематизувати знання учнів про тригонометричні функції; Розвивати вміння використовувати властивості тригонометричних функцій для розвязання вправ творчу активність розширювати кругозір учнів...
57845. Трикутник 4.09 MB
  Мета уроку: Навчальні: узагальнити та систематизувати знання про трикутник, його властивості, організувати діяльність учнів по застосуванню знань, при розв’язанні задач на застосування елементів трикутника; ознак рівності трикутників.
57846. Рівнобедрений трикутник. Властивість рівнобедреного трикутника 567.5 KB
  По закінченні прошу вас відповісти на запитання. Осмислення нових знань умінь Виконаємо декілька задач на розуміння означення рівнобедреного трикутника...
57847. Таємниці трикутника 475 KB
  Задачі проекту: розширити знання учнів з геометрії про трикутник та його властивості; ознаки подібності трикутників, Формулювати висновки на підставі проведених досліджень і роботи з інформацією...
57848. Урок. Трикутники 146.5 KB
  Мета уроку: Систематизувати та узагальнити знання учнів про зміст основних понять теми; систематизувати та узагальнити знання, вміння й навички учнів для розв’язування задач.
57849. Трикутник. Види трикутників. Периметр трикутника 62.5 KB
  Мета дидактична: подальше закріплення знань учнями класифікації трикутників; складання алгоритму побудови трикутників за двома сторонами і кутом між ними та за стороною і прилеглими кутами...
57850. Трикутники. Урок - захист проектів 361 KB
  Узагальнити початкові знання про трикутники: означення трикутника означення прямокутного трикутника сума кутів трикутника сума гострих кутів прямокутного трикутника види трикутників за його кутами визначні точки трикутника. Існує навіть окрема частина геометрії: геометрія трикутника. Слово надається Стегнію Валентину автору проекту Жорсткість трикутника Валентин. До вашої уваги презентація дослідницькоінформаційного проекту Жорсткість трикутника.
57851. Iнтегрований урок з читання, математики, Я i Украiни з використанням комп’ютерних технологiй. Тварини Лiсу 64.5 KB
  Мета: Вдосконалення техніки читання, вмiння складати схеми, речення, працювати з геометричним матеріалом, повторити калiграфiчне написання цифри 4, повторити таблицю додавання i вiднiмання числа 4, складання і розв’язування задачі.
57852. Уравнения. Угол. Многоугольники 48.5 KB
  Ожидаемые результаты: учащиеся должны решать уравнения на основе зависимости между компонентами при сложении и вычитании; уметь распознавать углы биссектрису угла строить углы с помощью транспортира решать задачи с помощью полученных знаний об углах...