22144

Решение дифференциальных уравнений равновесия совместно с условием пластичности

Реферат

Производство и промышленные технологии

Метод решения с использованием кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций деформациями. Дифференциальные уравнения равновесия упрощают в результате число этих уравнений сокращается до одного которое обычно содержит простые производные взамен частных как в точных уравнениях. Напомним точные дифференциальные уравнения равновесия: Если напряжение на контактной поверхности не зависят от Z то и Если принять линейную зависимость: то в итоге в место двух уравнений получим одно: .

Русский

2013-08-04

171 KB

19 чел.

Тема №3 «Решение дифференциальных уравнений равновесия совместно с условием пластичности»

  1.  Метод решения без использования кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций (деформациями).
  2.  Метод решения с использованием кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций (деформациями).

Метод применяется для решения осесимметричных или плоских задач (плоского деформирования состояния; плоского напряженного состояния)

Основные допущения, приемы и алгоритм метода:

  1.  Задачу приводят к осесимметричной или плоской. При сложной форме деформируемого тела его разбивают на ряд объемов, которые считают пребывающими в осесимметричном или плоском деформированном состоянии.
  2.  Распределение нормальных напряжений определяют только для контактной поверхности при отказе от выявления напряжений внутри тела.
  3.  Дифференциальные уравнения равновесия упрощают, в результате число этих уравнений сокращается до одного, которое обычно содержит простые производные взамен частных, как в точных уравнениях.
  4.  Условия пластичности используют также приближенные.

Напомним точные дифференциальные уравнения равновесия:

Если напряжение на контактной поверхности не зависят от Z то

и

Если принять линейную зависимость:, то в итоге в место двух уравнений получим одно:

.                                                                (2)

Уравнение (2) есть приближенное уравнение равновесия, полученное путем применения упрощающих допущений.

Условия пластичности:

при плоской деформации- .

Приближенное условие:

=>

    или

=>

=>

Плоское деформированное состояние

=>

Уравнение (2) с учетом условия пластичности преобразуется к виду:

.                                                           (3)

Для решения последнего уравнения относительного ,  считают удовлетворяющим определенной зависимости.

Трение при пластическом формоизменении – есть процесс сложного взаимодействия упругодеформированного инструмента и упруго-пластически деформированного металлического тела.

Это взаимодействие может быть непосредственным или опосредованным третьими веществами, например смазками. При решении задач, трение, как взаимодействие тел выражают элементарными силами .

записывают различным образом:

Закон Амонтона-Кулона

, где σ – нормальное контактное напряжение, μн коэффициент трения

                      , где τs – напряжение течения металла при сдвиге

Закон Зибеля

            

В работах Гуляева Ю.Р., Друяна В.М.

, где

где  – скорость деформации сдвига в плоскости параллельной касательной к элементу поверхности, Н – интенсивность скорости деформации сдвига.

Формула Леванова

– коэффициент трения см. в книге:

Леванов А.Н., Колмогоров А.Л., Буркин С.П. и др.   Контактное трение в процессах ОМД;  Металлургия 1976, 416 с.

2.  Допущения метода решения приближенных уравнений равновесия, состояния пластичности, кинематических и связи между напряжениями и скоростями (деформаций).

см. книга А.Г. Овчинников

Основы теории штамповки выдавливанием на прессах М. Машиностроение 1983, 200 с., с ил.

  1.  Напряженно-деформированное состояние заготовки или ее частей представляется плоским или осесимметричным.
  2.  Очаг пластической деформации представляется в виде отдельных областей, так чтобы в каждой из них можно было применить гипотезу плоских сечений.

Благодаря этому упрощению одну из скоростей течения (пояснить) удается выразить в функции одной координаты (если скорость- функция двух и более координат, то решение получается громоздким и трудоемким).

Для определения другой составляющей скорости используют условие несжимаемости металла.

  1.  В каждой области определяют среднее значение интенсивности скоростей деформаций (деформаций при холодной), которое считается постоянным для области в процессе решения.

Напряжение течения выбирают по среднему значению интенсивности скоростей деформаций (интенсивности деформации при холодной).

  1.  На границах областей допускаются разрывы  скоростей сдвига, нормальных скоростей, при соблюдении условия постоянства расхода (отсутствие разрыва скоростей в интегральной форме).
  2.  Касательные напряжения  на контактных поверхностях заготовки и инструмента принимают в форме какого-либо закона.
  3.  Дифференциальные уравнения  интегрируют с использованием приближенных методов.
  4.  Размеры очага деформации в заготовке определяют с использованием приближенных методов на основе минимизации мощности или работы пластической деформации.

Условие несжимаемости для осесимметричного НДС:

или , или ;

или ;

для плоского НДС:

или ;

или .

Условия несжимаемости следуют из гипотезы постоянства объема при пластическом формоизменении металлической заготовки

где υz, υρ и т.д. функции описывающие составляющие скорости течения частиц  вдоль соответствующих осей координат.

uz, uρ – функции описывающие составляющие перемещения частиц вдоль соответствующих осей.

Пример:

Пусть

при  где

при

где a– коэффициент определяется граничными условиями и экспериментально.

Рис.1 Схема продольной осадки цилиндра:

1 – зона затрудненной деформации; υд – скорость деформирования.

Выбранное выражение для υz удовлетворяет граничным условиям. При z=0, υz=0, при , .

После подстановки (1) в условие несжимаемости и его интегрирования с граничным условием ρ=0 υд=0 получим:

.                                               (2)

(1) и (2) вместе так называемое кинематически возможное поле скоростей течения. Оно удовлетворяет условию несжимаемости и граничным условиям.

Функции υz и υρ – называются подходящими функциями.

Уравнения связи:

и т.д.

Кинематические уравнения:

; ;

  1.  

 

и т.д.

Алгоритм применения метода.

  1.  Формулировка и определение кинематически возможного поля скоростей для области тела
  2.  Определение по кинематическим уравнениям функций: , ,  или , ,  и т.д. и среднего значения для каждой области интенсивности  скоростей деформаций ( или ).
  3.  Выбор        по диаграмме деформирования.
  4.   Запись уравнений связи.
  5.  Запись и решение дифференциальных уравнений равновесия. Последние решают относительно .
  6.  Окончательная запись уравнений связи.
  7.  Расчет напряжений для отдельных частиц и построение эпюр нормальных контактных напряжений.
  8.  Расчет силы деформирования
  9.  Расчет полей напряжений , , ,  и т.д.

 

А также другие работы, которые могут Вас заинтересовать

22015. Польские земли до XV вв. 115.5 KB
  В Польше некоторое ограничение крестьянских выходов были узаконено для всей Малой Польши Вислицким статутом Казимира III так как села пустеют то мы устанавливаем чтобы из одного села в другое вопреки желанию господина села в котором они живут могло перебраться не больше чем 12 кметя. Изданный одновременно для Великой Польши Пётрковский статут разрешал выход на рождество если за крестьянином не было недоимок. В христианизации Польши большую роль сыграла Чехия. Мешко в борьбе с Чехией овладел Силезией и частью Малой Польши.
22016. Польша в XVI-XVII вв. 89 KB
  В XVI в. Население Польши росло вплоть до середины XVII в. Судя по данным описей второй половины XVI в.
22017. Скандинавия до XV в. 127.5 KB
  Температура января – в Северной Норвегии 0 7 в Южной и Центральной Швеции – от 1 до 3. Климат морской в Норвегии Дании Исландии умеренно континентальный на большей части Швеции. Это было вызвано тем что доля территории Швеции и Норвегии это не касается Дании на которой можно вести земледельческое хозяйство невелика – в Норвегии – 3 в Швеции – 9 в Исландии – около 1 от площади страны. Полная деревня Швеции – 48 дворов.
22018. Кальциевый насос животной клетки 208.5 KB
  Он выполняет важнейшую функцию активный перенос ионов кальция через мембраны клеток поддерживая тем самым низкую концентрацию этих ионов в клетке 107 М по сравнению с окружающей средой 3103 М. Введение В цитоплазме клеток концентрация ионов кальция составляет всего 50100 нМ 5108 1107 М тогда как в окружающей клетки среде она равна примерно 3 мМ 3103 М. Поддерживает эту разницу в концентрации на четыре порядка величины система активного транспорта ионов кальция главную роль в которой играет кальциевый насос ...
22019. Общая схема реакций 129.5 KB
  Кинетика окисления ионов Fe2 образование продуктов перекисного окисления липидов MDA и хемилюминесценции I в суспензии митохондрий к которой добавлены ионы двухвалентного железа момент введения показан стрелкой Vladimirov Yu. Кинетика окисления ионов Fe2 образование продуктов перекисного окисления липидов MDA и хемилюминесценции I в суспензии митохондрий к которой добавлены ионы двухвалентного железа момент введения показан стрелкой Vladimirov Yu. Кинетика процесса перекисного окисления обладает большой сложностью...
22020. Кинетика химических реакций 144.5 KB
  Зависимость изменения концентрации участников реакции т. субстратов и продуктов от времени называют кинетикой реакции. Итак повторим некоторые определения: Субстраты вещества вступающие в реакцию Продукты вещества образующиеся в результате реакции Промежуточные вещества продукты сразу же вступающие в новую реакцию Скорость реакции изменение концентрации одного из продуктов который рассматривается в качестве главного.
22021. Принцип метода ЭПР 488.5 KB
  Кроме свободнорадикальных состояний методом ЭПРисследуют триплетные состояния возникающие в ходе фотобиологических процессов. Пионерами применения ЭПР в биологических исследованиях в СССР были Л. Характеристики спектров ЭПР Амплитуда сигнала Сигнал ЭПР представляет собой первую производную от линии.
22022. Сила, работа и энергия 219 KB
  Экспериментальная работа с биологическими объектами ставит своей задачей по сути дела моделирование процессов протекающих в живом организме. Сила работа и энергия Из физики мы знаем что сила это причина изменения скорости тела. По определению работа A равна произведению силы F действующей на некоторое тело на перемещение s этого тела в направлении действия силы. И сила и перемещение векторы; работа же скалярная величина равная призведению этих векторов: 1 Будучи скаляром работа рассматривается в термодинамике а...
22023. Реакции окисления-восстановления 126.5 KB
  Атомы цинка могут переходить из металлической решетки в водный раствор в виде ионов цинка Zn2; при этом освободившиеся электроны уходят по электрической цепи т. происходит процесс: Zn Zn2 2e Отрыв электрона от цинка называется процессом его окисления присоединение электронов к ионам цинка называют их восстановлением. Интуитивно мы понимаем что увеличение потенциала будет способствовать восстановлению ионов цинка до металлического цинка тогда как его уменьшение наоборот окислению цинка до ионов см. Для этого рассчитаем количество...