22144

Решение дифференциальных уравнений равновесия совместно с условием пластичности

Реферат

Производство и промышленные технологии

Метод решения с использованием кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций деформациями. Дифференциальные уравнения равновесия упрощают в результате число этих уравнений сокращается до одного которое обычно содержит простые производные взамен частных как в точных уравнениях. Напомним точные дифференциальные уравнения равновесия: Если напряжение на контактной поверхности не зависят от Z то и Если принять линейную зависимость: то в итоге в место двух уравнений получим одно: .

Русский

2013-08-04

171 KB

19 чел.

Тема №3 «Решение дифференциальных уравнений равновесия совместно с условием пластичности»

  1.  Метод решения без использования кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций (деформациями).
  2.  Метод решения с использованием кинематических уравнений и уравнений связи между напряжениями и скоростями деформаций (деформациями).

Метод применяется для решения осесимметричных или плоских задач (плоского деформирования состояния; плоского напряженного состояния)

Основные допущения, приемы и алгоритм метода:

  1.  Задачу приводят к осесимметричной или плоской. При сложной форме деформируемого тела его разбивают на ряд объемов, которые считают пребывающими в осесимметричном или плоском деформированном состоянии.
  2.  Распределение нормальных напряжений определяют только для контактной поверхности при отказе от выявления напряжений внутри тела.
  3.  Дифференциальные уравнения равновесия упрощают, в результате число этих уравнений сокращается до одного, которое обычно содержит простые производные взамен частных, как в точных уравнениях.
  4.  Условия пластичности используют также приближенные.

Напомним точные дифференциальные уравнения равновесия:

Если напряжение на контактной поверхности не зависят от Z то

и

Если принять линейную зависимость:, то в итоге в место двух уравнений получим одно:

.                                                                (2)

Уравнение (2) есть приближенное уравнение равновесия, полученное путем применения упрощающих допущений.

Условия пластичности:

при плоской деформации- .

Приближенное условие:

=>

    или

=>

=>

Плоское деформированное состояние

=>

Уравнение (2) с учетом условия пластичности преобразуется к виду:

.                                                           (3)

Для решения последнего уравнения относительного ,  считают удовлетворяющим определенной зависимости.

Трение при пластическом формоизменении – есть процесс сложного взаимодействия упругодеформированного инструмента и упруго-пластически деформированного металлического тела.

Это взаимодействие может быть непосредственным или опосредованным третьими веществами, например смазками. При решении задач, трение, как взаимодействие тел выражают элементарными силами .

записывают различным образом:

Закон Амонтона-Кулона

, где σ – нормальное контактное напряжение, μн коэффициент трения

                      , где τs – напряжение течения металла при сдвиге

Закон Зибеля

            

В работах Гуляева Ю.Р., Друяна В.М.

, где

где  – скорость деформации сдвига в плоскости параллельной касательной к элементу поверхности, Н – интенсивность скорости деформации сдвига.

Формула Леванова

– коэффициент трения см. в книге:

Леванов А.Н., Колмогоров А.Л., Буркин С.П. и др.   Контактное трение в процессах ОМД;  Металлургия 1976, 416 с.

2.  Допущения метода решения приближенных уравнений равновесия, состояния пластичности, кинематических и связи между напряжениями и скоростями (деформаций).

см. книга А.Г. Овчинников

Основы теории штамповки выдавливанием на прессах М. Машиностроение 1983, 200 с., с ил.

  1.  Напряженно-деформированное состояние заготовки или ее частей представляется плоским или осесимметричным.
  2.  Очаг пластической деформации представляется в виде отдельных областей, так чтобы в каждой из них можно было применить гипотезу плоских сечений.

Благодаря этому упрощению одну из скоростей течения (пояснить) удается выразить в функции одной координаты (если скорость- функция двух и более координат, то решение получается громоздким и трудоемким).

Для определения другой составляющей скорости используют условие несжимаемости металла.

  1.  В каждой области определяют среднее значение интенсивности скоростей деформаций (деформаций при холодной), которое считается постоянным для области в процессе решения.

Напряжение течения выбирают по среднему значению интенсивности скоростей деформаций (интенсивности деформации при холодной).

  1.  На границах областей допускаются разрывы  скоростей сдвига, нормальных скоростей, при соблюдении условия постоянства расхода (отсутствие разрыва скоростей в интегральной форме).
  2.  Касательные напряжения  на контактных поверхностях заготовки и инструмента принимают в форме какого-либо закона.
  3.  Дифференциальные уравнения  интегрируют с использованием приближенных методов.
  4.  Размеры очага деформации в заготовке определяют с использованием приближенных методов на основе минимизации мощности или работы пластической деформации.

Условие несжимаемости для осесимметричного НДС:

или , или ;

или ;

для плоского НДС:

или ;

или .

Условия несжимаемости следуют из гипотезы постоянства объема при пластическом формоизменении металлической заготовки

где υz, υρ и т.д. функции описывающие составляющие скорости течения частиц  вдоль соответствующих осей координат.

uz, uρ – функции описывающие составляющие перемещения частиц вдоль соответствующих осей.

Пример:

Пусть

при  где

при

где a– коэффициент определяется граничными условиями и экспериментально.

Рис.1 Схема продольной осадки цилиндра:

1 – зона затрудненной деформации; υд – скорость деформирования.

Выбранное выражение для υz удовлетворяет граничным условиям. При z=0, υz=0, при , .

После подстановки (1) в условие несжимаемости и его интегрирования с граничным условием ρ=0 υд=0 получим:

.                                               (2)

(1) и (2) вместе так называемое кинематически возможное поле скоростей течения. Оно удовлетворяет условию несжимаемости и граничным условиям.

Функции υz и υρ – называются подходящими функциями.

Уравнения связи:

и т.д.

Кинематические уравнения:

; ;

  1.  

 

и т.д.

Алгоритм применения метода.

  1.  Формулировка и определение кинематически возможного поля скоростей для области тела
  2.  Определение по кинематическим уравнениям функций: , ,  или , ,  и т.д. и среднего значения для каждой области интенсивности  скоростей деформаций ( или ).
  3.  Выбор        по диаграмме деформирования.
  4.   Запись уравнений связи.
  5.  Запись и решение дифференциальных уравнений равновесия. Последние решают относительно .
  6.  Окончательная запись уравнений связи.
  7.  Расчет напряжений для отдельных частиц и построение эпюр нормальных контактных напряжений.
  8.  Расчет силы деформирования
  9.  Расчет полей напряжений , , ,  и т.д.

 

А также другие работы, которые могут Вас заинтересовать

445. Пути повышения эффективности производства медных гранул медеплавильного цеха ОАО Уралэлектромедь 852 KB
  Пути повышения эффективности работы предприятия в условиях рынка. Характеристика и технологический процесс медеплавильного цеха. Анализ производственно-хозяйственной деятельности. Безопасность и экологичность работы
446. Расчет трансформатора 331 KB
  Расчет цилиндрической обмотки 1 из провода прямоугольного сечения. Расчет многослойной цилиндрической обмотки 2 из провода круглого сечения. Параметры и относительное изменение напряжения трансформатора. Механические силы в обмотках при коротком замыкании.
447. Лексическая типология оригинальных и переводных текстов: на материале поэтических произведений Дж.М. Хопкинса 304.48 KB
  Лингвистический подход в настоящее время является общепризнанным и подтвержден многочисленными успешными переводами на практике, а также весьма убедительными данными научных исследований.
448. Методы формирования конкурентных преимуществ на примере кофейни 320.78 KB
  Теоретические основы формирования конкурентных преимуществ предприятия. Оценка конкурентных преимуществ кофейни Кофемания. Организационная характеристика деятельности. Формирование конкурентных преимуществ кофейни Кофемания. Рекомендации по обеспечению конкурентных преимуществ.
449. Синтез соли кобальта на примере [Co(NH3)4CO3]NO3 360.5 KB
  Соединения кобальта представляют особый интерес, так как из трех основных ферромагнитных металлов-железа, никеля и кобальта. Нахождение кобальта в природе и его физические свойства. Комплексные соединения Co(III).
450. Розробка об'єктної моделі конкретної системи збору даних - 815 KB
  Модель Rose - це картина системи. Вона містить всі діаграми UML, дійових осіб, варіанти використання, об'єкти, класи, компоненти і вузли системи. Вона детально описує, що система містить і як функціонує, тому розробники можуть використовувати її як ескіз або креслення створюваної системи.
451. Базы данных Автомобильная стоянка 490 KB
  Такая система должна обеспечивать получение общих и детализированных отчетов по автостоянке, позволять легко определять тенденции изменения важнейших показателей, обеспечивать получение информации, критической по времени, без существенных задержек, выполнять точный и полный анализ данных.
452. Історія української політичної думки 716 KB
  Політична думка давньокиївського періоду. Іларіон Слова про закон і благодать. Проблема організації державної влади в політичній концепції Ст. Оріховського. Політичні ідеї І. Виговського та Ю. Немирича. Декабристський рух і масонство в Україні на поч. XIX ст.
453. Сварка и резка металлов как технологический процесс 731.31 KB
  С помощью сварки соединяют между собой различные металлы, их сплавы, некоторые керамические материалы, пластмассы, стекла и разнородные материалы. Дуговая сварка повсеместно используется в металлообработке, машиностроении, металлургии, сельском хозяйстве, строительстве, на транспорте и других отраслях.