22149

Индуктивные преобразователи перемещения

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Если пренебречь потоками рассеяния и выпучиванием потока в воздушном зазоре d Rм будет складываться из активного магнитного сопротивления сердечника якоря и двух воздушных зазоров где соответственно lС lЯ d длина сердечника якоря и воздушного зазора в м; SC SЯ Sd сечение сердечника якоря и воздушного зазора в м2; mас mая абсолютная магнитная проницаемость материала сердечника и якоря в гн м; m0= 4p107 гн м магнитная проницаемость вакуума. Для упрощения анализа работы простейшего ИП пренебрежем потерями в стали магнитным...

Русский

2013-08-04

723.5 KB

40 чел.

Индуктивные преобразователи перемещения

Содержание.

1. Введение.

2. Принцип работы.

2.1Схема простейшего ИП.

2.2Физические параметры определяющие ИП.

2.3ФП.

2.4Электрическая схема включения.

3. Погрешности ИП.

4. Выводы.

5. Контрольные вопросы.

6. Список литературы.

  1.  Введение:

  Развитие управляющих систем неразрывно связано с измерением разнообразных физических величин: механических, тепловых, химических, оптических, акустических и других.

 Любая физическая величина при изучении и техническом использовании подвергается измерению. Развитие информационно – измерительных систем привело к тому, что процесс измерения в современных измерительных устройствах состоит в преобразовании информации о значении измеряемой величины в такую форму, которая удобна для хранения, обработки и передачи на расстояние. Практика показала, что наиболее удобным является преобразование физических величин в электрические величины, так как при этом для последующих операций может быть использована стандартная электрическая аппаратура, обладающая целым рядом существенных преимуществ:

-высокая точность;

-простота изменения чувствительности приборов;

-широкий диапазон измеряемых величин;

-высокое быстродействие;

-возможность дистанционного измерения;

-возможность выполнения математических операций;

-удобство регистрации.

  Трудно перечислить области науки, техники и промышленности, в которых преобразователям физических величин в электрические не принадлежала бы ведущая роль. Все открытия в области ядерных явлений, изучение космоса и недр нашей планеты оказались возможными благодаря бурному развитию преобразователей физических величин, важное место среди которых занимают преобразователи неэлектрических величин.

   В частности для преобразования пространственных физических величин (линейных или угловых перемещений) в электрический сигнал широко применяются индуктивные преобразователи.

  1.  Принцип работы

Принцип работы ИП основан на изменении самоиндукции катушки (L) при изменении магнитного сопротивления его магнитной цепи . Изменение магнитного сопротивления происходит в результате изменения параметров воздушного зазора под действием входного сигнала .

Схема простейшего ИП приведена на рис.1 и представляет собой катушку самоиндукции W с ферромагнитным сердечником 1 и якорем 2, отделенным от сердечника воздушным зазором d. Магнитное сопротивление зазора Rd измениться в результате изменения величины воздушного зазора d или его площади поперечного сечения Sd. Катушка соединена с нагрузкой Zн и источником переменного напряжения U~.

Рисунок 1

Сердечник и якорь изготавливают из магнитомягких материалов с малыми потерями на гистерезис . Для уменьшения потерь на вихревые токи сердечник и якорь набирают из отдельных изолированных друг от друга пластин .

Потери на гистерезис и вихревые токи ( потери в стали Рст ) обуславливают комплексный характер магнитного сопротивления Zм.

ZМ=Rм +jXм ,          (1)

где Rм - активное сопротивление магнитной цепи ;

     Xм  - реактивная составляющая магнитного сопротивления.

 Если пренебречь потоками рассеяния и выпучиванием потока в воздушном зазоре d Rм будет складываться из активного магнитного сопротивления сердечника, якоря

и двух воздушных зазоров

где соответственно  - lС, lЯ, d - длина сердечника, якоря и воздушного зазора в м;

SC, SЯ, Sd - сечение сердечника, якоря и воздушного зазора в м2;

mас, mая - абсолютная магнитная проницаемость материала сердечника и якоря в гн/м;

m0= 4p*10-7 гн/м - магнитная проницаемость вакуума.

Реактивная составляющая магнитного сопротивления определяется потерями в стали Рст и при отсутствии или слабом проявлении поверхностного эффекта может быть найдена по формуле

,           (4)

где w=2pf - круговая частота питающего напряжения;

f - действующее значение магнитного потока.

Индуктивность (коэффициент самоиндукции) катушки также будет комплексной величиной

,       (5)

где Y - потокосцепление;

      J - ток катушки;

- модуль комплексного магнитного сопротивления.

Тогда сопротивление катушки индуктивности

      (6)

где - rk активное сопротивление обмотки катушки .

Из формулы (6) видно, что учет потерь в стали эквивалентен увеличению потерь в катушке из-за увеличения ее активного сопротивления.

Потери в стали определяются выбранным материалом, конструкцией магнитной цепи, его режимом работы и в ИП должны быть незначительными. Применение магнитопроводов из набора отдельных пластин, материалов магнитопровода с узкой петлей гистерезиса и выбор незначительных рабочих магнитных индукций ( 0,1 ¸ 0,3 Т ) существенно снижают потери в стали.

Для упрощения анализа работы простейшего ИП пренебрежем потерями в стали, магнитным сопротивлением  стали RСТ, так как при малых зазорах , Пусть имеем  и  , тогда получим, что эффективное значение тока в нагрузке

       (7)

линейно зависит от перемещения якоря (d) (пунктирная линия на Рис.2)

               Рисунок 2.

Реальная ФП (сплошная линия на Рис. 2) отличается от полученной идеализированной в области малых и больших перемещений, которое обусловлено соответственно пренебрежением RCT и RH , rk .

Электрические схемы формирования сигнала выполняются по дифференциальной (Рис.3) или мостовой схемам (Рис.4).

                                                               Рисунок3

Рисунок  4

Рассмотрим работу реверсивного ИП, включенного по дифференциальной схеме.

Схема состоит из дифференциального трансформатора Тр 1, двух индуктивностей L1 и L2 простейших ИП , соединенных на общую нагрузку Zн . Входным сигналом является перемещение () от среднего положения общего якоря .

Выходным сигналом является разность токов в нагрузке или падение напряжений на ней .

Определим ФП  , где  , тогда для приведенной схемы имеем

         (8)

Токи и определим , используя принцип наложения

,      (9)

,      (10)

где Z0 - внутреннее сопротивление источника напряжения , которое принимаем одинаковым для обеих половин дифференциального трансформатора ;

 Z1,Z2 - сопротивления половин простейших ИП с индуктивностями L1 и L2 .

Подставим (9,10) в (8) , получим :

.      (11)

Обычно внутреннее сопротивление дифференциального источника напряжения гораздо меньше,

чем остальные сопротивления рассматриваемой цепи , также и активные составляющие сопротивлений ИП Z1 и Z2 . Для упрощения расчета , кроме специальных случаев, сопротивление нагрузки выбирают активным , т.е. .

Тогда, пренебрегая Z0 и считая, что

, ,

получим выражение напряжения на нагрузке

.        (12)

Если пренебречь так же , как и для простейших ИП , потерями в стали , потоками рассеяния и магнитным сопротивлением стали якоря и сердечника , тогда получим в первом приближении индуктивности L1 и L2

  , ,       (13)

где W1=W2=W - число витков катушек индуктивности ;

- площадь воздушного зазора ;

- площадь воздушного зазора при Х=0 .

Тогда , подставив (13) в (12) и проведя преобразования , получим

        (14)

или модуль действующего значения выходного напряжения

,       (15)

где SU - чувствительность дифференциального ИП по напряжению.

Из (15) видно, что так же, как и для простейшего ИП в первом приближении получили линейную зависимость ФП  (Рис.5 , пунктирная линия). Реальная ФП  (Рис.5, сплошная линия) будет нелинейной при больших значениях входного сигнала по тем же причинам, что и для простейшего ИП, но уже имеет больший линейный участок ФП. Максимальная чувствительность SU получиться при холостом ходе, т.е. RH=¥.

Рисунок  5

 Тяговое усилие у дифференциального ИП гораздо меньше, т.к. представляет разность тяговых усилий простейших ИП. Фаза выходного напряжения изменяется на 180О при переходе через нулевое положение. Практически не удается получить нулевое значение выходного сигнала при среднем положении якоря , т.к. нельзя добиться абсолютной симметрии (геометрической , магнитной , электрической ) отдельных простейших ИП . Кроме того , в силу нелинейности кривых намагничивания материалов сердечника и якоря в выходном “нулевом” сигнале будет присутствовать напряжение четных гармоник.

ИП конструктивно выполняются как для преобразования линейного перемещения, так и углового.

  1.  Погрешности ИП.

ИП в рабочих условиях подвергаются воздействию различных неблагоприятных условий, ухудшающих их точность. Источниками основной погрешности у ИП являются:

  •  Поперечные смещения подвижного сердечника, приводящие к появлению случайной погрешности.
  •  Гистерезис преобразователя из-за механических смещений.
  •  Влияние собственных температур.

Дополнительная погрешность создаётся из – за:

  •  Влияния температуры окружающей среды на геометрические размеры зазора и удельное магнитное сопротивление.
  •  Влияние внешних ферромагнитных масс.
  •  Колебание частоту питающей сети
  •  Колебание напряжения питающей сети
  •  Влияние вибрации.

Одним из методов уменьшения погрешности является структурный метод. По этому методу прибор строится из преобразователей, подверженных действию влияющих величин, но его структурная схема выбирается такой, чтобы частные погрешности отдельных преобразователей взаимно компенсировались. Структурная схема прибора во многом определяет его свойства. Приборы построенные по простым схемам, обычно дешевле и надежнее приборов, построенных по сложным схемам. Однако усложнение схемы приводит к прибору с лучшими метрологическими характеристиками: меньшей погрешности, меньшей инерционности.

     Температурная погрешность ИП в основном обусловлена изменением активной составляющей их сопротивления. Эта погрешность аддитивна и уменьшается в случае применения мостовых схем. Так же при изменении температуры изменяется магнитная проницаемость стали, что приводит к некоторому дополнительному изменению аддитивной и мультипликативной погрешностей.

При изменении напряжения питания меняется магнитная проницаемость магнитопровода преобразователя, а следовательно, его сопротивление и чувствительность. Изменяется также чувствительность мостовой измерительной цепи. Изменение сопротивления приводит к аддитивной погрешности и компенсируется мостовой цепью. Изменение чувствительности создаёт мультипликативную погрешность. Для её уменьшения либо стабилизируют напряжение источника питания моста, либо применяют компенсационные схемы измерения.

Изменение частоты питающего напряжения приводит к изменению сопротивления резисторов, включенных в мост, и меняя чувствительность. Малую погрешность имеют мостовые схемы (рис.4), у которых чувствительность в режиме холостого хода не зависит от параметров цепи. У других схем для уменьшения погрешности нужно стабилизировать частоту питающего напряжения.

  При перемещении якоря преобразователя изменяется выходное напряжение моста. При среднем положении якоря должно быть Uвых=0. Однако практически имеется небольшое напряжение, что приводит к аддитивной погрешности измерительного моста. Для балансировки мостов переменного тока необходима раздельная регулировка действительной и мнимой составляющих его выходного напряжения. В местах с ИП одна составляющая регулируется перемещением якоря преобразователя, другая- путем регулировки других сопротивлений. Если регулировка сделана недостаточно тщательно, то изменением положения якоря нельзя полностью сбалансировать схему.

   Другая причина погрешности моста заключается в том, что в питающем напряжении помимо напряжения с основной частотой имеются составляющии с кратными частотами и с частотой промышленной сети. Реальный мост переменного тока, питающийся таким напряжением, полностью сбалансировать трудно вследствии наличия несбалансированных составляющих с частотами, отличными от основной.

  Для уменьшения погрешности, обусловленной остаточным расбалансом моста, используется фазочувствительный выпрямитель. Его средний выходной ток

 I=kUcosy,

где U – подаваемое на вход напряжение; y – фазовый угол между измеряемым и управляющим напряжением; k – коэффициент пропорциональности, зависящий от параметров выпрямителя.

  Прибор проектируется так, чтобы напряжение расбаланса моста, вызванное перемещением якоря преобразователя,было в фазе с управляющим напряжением, а напряжение, вызванное плохим подбором сопротивлений, было сдвинуто нга угол y=  \ 2. При этом выходной ток выпрямителя будет определятся только перемещением якоря ИП.

  Фазочувствительный выпрямитель выпрямляет напряжение, имеющее ту же частоту, что и управляющее напряжение, и частоту его нечетных гармоник. Это значительно уменьшает аддитивную погрешность, вызванную наличием высших гармоник в напряжении питания моста.

  1.  Выводы:

ИП применяются, в основном, для контроля размеров измерения деформации деталей.

Одним из основных достоинств ИП является возможность получения большой мощности преобразователя, что позволяет пользоваться сравнительно малочувствительным указателем на выходе измерительной цепи и регистрировать измеряемую переменную величину вибратором осциллографа без предварительного усиления.   

Простейшие ИП имеют также и существенные недостатки:

-нереверсивность;

-наличие значительного нулевого сигнала (J0);

-нелинейность ФП;

-большое тяговое усилие;

-значительный фазовый сдвиг выходного сигнала.

Поэтому они отдельно применяются редко, а являются составной частью дифференциальных конструкций, у которых якорь является общим для обоих половин ИП.

  1.  Контрольные вопросы

1. Объясните принцип работы простейшего ИП?

2. Какие недостатки у простейшего ИП?

3. Почему появляется реактивный момент у ИП?

5. Какие требования к материалам магнитопроводов ИП?

6. Каким образом можно уменьшить реактивный момент (усилие) и динамическую погрешность у ИП?

8. Какие основные источники погрешностей у ИП?

12


 

А также другие работы, которые могут Вас заинтересовать

68936. Форматування за допомогою членів класу ios 105 KB
  Зокрема можна самостійно задавати різні прапори форматування визначені усередині класу ios або викликати різноманітні функціїчлени. Розглянемо спочатку засоби форматованого введеннявиводу за допомогою прапорів і функцій членів класу ios.
68937. Перевантаження операторів „«“ і „»“ 45 KB
  Оператор виведення називається оператором вставки insertion opertor тому що він вставляє символи в потік. Функції що перенавантажують оператори вставки і витягання називаються функціями вставки inserters і витягання extrctors відповідно. Створення власних функцій вставки...
68938. Створення власних маніпуляторів 41.5 KB
  Систему введення-виводу можна удосконалити, створивши свої власні маніпулятори. Ця можливість є важливою по двох причинах. По-перше, можна зосередити декілька операцій введення-виводу в одному маніпуляторі. Наприклад, досить часто в програмах виконується одна і та ж послідовність операцій введення-виводу.
68939. Історія об’єктно-орієнтованого програмування 35.5 KB
  Оскільки стимулом розробки мови C++ було об’єктно-орієнтоване I програмування (ООП), необхідно розуміти його основні принципи. Обєктно-орієнтоване програмування — досить могутній механізм. З моменту винаходу комп’ютера методології програмування різко змінилися, в основному із-за зростаючої складності програм.
68940. Класи та об’єкти в мові С++ 45 KB
  Клас є абстрактним типом даних, який визначається користувачем, і є моделлю реального обєкту у вигляді даних і функцій для роботи з ними. Дані класу називаються полями (по аналогії з полями структури), а функції класу — методами. Поля і методи називаються елементами класу.
68941. Контейнери 23.5 KB
  Іншими словами ви оголошуєте клас який містить члени даних які самі є екземплярами інших класів або покажчиками на інші класи. За допомогою контейнера класгосподар отримує доступ до відкритих членів класів що містяться. Деякі знавці C вважають за краще використовувати контейнери а не множинне спадкоємство...
68942. Inline функції 36.5 KB
  Визначення функцій що підставляються усередині класу Мова C володіє важливою властивістю: у нім існують функції inline functions що підставляються які широко використовуються в класах. Щоб замінити виклик функції підстановкою перед її визначенням слід вказати слово inline.
68943. Статичні члени класу 43.5 KB
  Якщо перед оголошенням змінної-члена поставити ключове слово static, компілятор створить тільки один екземпляр цієї змінної, який використовуватиметься всіма об’єктами даного класу. На відміну від звичайних змінних-членів, статичні змінні-члени не копіюються для кожного об’єкту окремо.
68944. Статичні функції-члени 28 KB
  Функції-члени також можуть бути статичними, але на них розповсюджується декілька обмежень. Вони мають прямий доступ тільки до інших статичних членів класу. (Зрозуміло, глобальні функції і дані також доступні статичним функціям-членам.) Статична функція-член не має покажчика this.