22160

ТЕНЗОРЕЗИСТОРЫ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

2 Основные параметры и характеристики тензорезисторов. 3 Расчёт тензорезисторов. 5 Конструкция тензорезисторов. 9 Схемы включения тензорезисторов.

Русский

2013-08-04

114.5 KB

154 чел.

ТЕНЗОРЕЗИСТОРЫ

       СОДЕРЖАНИЕ

Введение                                                                                                            2

Определение и принцип работы

тензорезистивных преобразователей.                                                             2

Основные параметры и характеристики тензорезисторов.                           3

Расчёт тензорезисторов.                                                                                   5

Конструкция тензорезисторов.                                                                        9

Схемы включения  тензорезисторов.                                                             12

Заключение                                                                                                       16

Контрольные вопросы.                                                                                    16

Литература                                                                                                        17

                          ВВЕДЕНИЕ

Обеспечение высокого и стабильного качества промышленной продукции является в настоящее время одной из основных проблем, на решение которой направлены усилия коллективов ученых, конструкторов и технологов.

В рамках этой проблемы важное место занимают прочностные испытания образцов техники. Для измерения напряжений или величин деформаций в деталях машин и элементах конструкций используют резистивные, струнные и индуктивные первичные преобразователи в сочетании с измерительными схемами включения и преобразования информации.

Из названных выше первичных преобразователей в практике наиболее часто находят применение тензорезисторы.

Простота конструкции, малые масса и габариты позволяют использовать тензорезисторы для измерения сил, давлений, вращающих моментов, ускорений и других величин, преобразуемых в упругую деформацию в труднодоступных местах различных машин и механизмов без изменения конструкций.

Определение и принцип работы тензорезистивных преобразователей.

Тензорезисторами называют преобразователи, осуществляющие преобразование механических деформаций в изменение электрического сопротивления, т.е. преобразователи, основанные на тензоэффекте.

Как следует из определения, измерения деформаций  с помощью тензорезисторов основано на тензоэффекте. Тензоэффектом называется свойство проводниковых и полупроводниковых материалов изменять электропроводность (электрическое сопротивление) при изменении объёма или напряжённого состояния.

У полупроводников материалов тензоэффект связан со значительным изменением удельного сопротивления; знак тензоэффекта зависит от типа проводимости полупроводникового материала, а величина – от кристаллографического направления. Наиболее сильно тензорезистивный эффект выражен в полупроводниковых кристаллах германия и кремния. Для создания полупроводниковых тензорезистивных элементов применяются преимущественно кремний, поскольку он, по сравнению с германием, имеет более высокую тензочувствительнотсть, большую механическую прочность и выдерживает более высокие температуры. Тензометрические свойства кремния анизотропны и зависят от кристаллографических направлений. Наибольшей тензочувствительностью обладают тензорезисторы, у которых направление деформации совпадает с кристаллографическим направлением.

          Основные параметры и характеристики тензорезисторов.

Тензорезисторы характеризуются рядом параметров, основными из которых являются:

- тензочувствительность  Sт;

- номинальное сопротивление R;

- допустимая деформация  Едоп;

- погрешность преобразования.

Для обоих видов тензочувствительных материалов, проводниковых и полупроводниковых, тензоэффект характеризуется величиной  тензочувствительности, устанавливающей связь между относительным изменением сопротивления и относительной деформацией в направлении измерений [1,2].

Тензочувствительность материала характеризуется зависимостью

                    ST = =1+2 ,                                           [1]

где  ; R; ΔR; Δ - длина и сопротивление тензочувствительного элемента и их приращение в следствии деформации;

m - коэффициент эластосопротивления, равный   m =υΕм ;

Εм  - модуль упругости образца тензочувствительного материала;

υ – продольный коэффициент пьезосопротивления.

В формуле члены 1+2 определяют зависимость величины  ST  от изменения геометрии, а последний член – от изменения свойств материала образца. Для металлов m составляет небольшую долю от величины 1+2. Для полупроводниковых материалов, наоборот, m> 1+2, и для них без особой ошибки можно считать, что  ST m. Коэффициент Пуассона для металлов и сплавов, из которых изготовляют тензорезисторы, в области упругих деформаций лежит в пределах 0,24 – 0,42. Учитывая, что m≈ 0, получаем величину ST =1,48÷1,84, т.е. значение коэффициента тензочувствительности проволочных и и фольговых преобразователей близко к двум. У полупроводниковых материалов μ и m достигают нескольких десятков, а поэтому ST =50÷100. Важным свойством полупроводниковых тензорезисторов является практически линейная зависимость сопротивления от деформации и температуры, поэтому отпадает необходимость применения специальных средств для компенсации нелинейности.

Номинальное сопротивление тензорезистора – сопротивление между его выводами при заданной температуре окружающей среды в отсутствии механических нагрузок.

Величины номинального сопротивления проволочных и фольговых тензорезисторов находятся в пределах 10–800 Ом, полупроводниковых –       50– 50000 Ом.

Одной из важных характеристик тензорезисторов является допустимая деформация Едоп. Её  превышение приводит к появлению остаточных деформаций и даже обрыву проволочных проводников и разрушение пластины полупроводниковых преобразователей. Для тензорезисторов Едоп =3÷5∙10-3.

Максимально возможное изменение сопротивления преобразователей составляет:

у проволочных и фольговых при Sт=2

                         = Sт Едоп = 2∙3∙10-3 =0,6%                                        [2]

у полупроводниковых при Sт=100

                         =30%.

Вследствие малости относительного изменения сопротивления проволочных и фольговых преобразователей возникает необходимость включения их в специальные схемы, предусматривающие усиление сигнала и компенсацию изменения сопротивления R в зависимости от других факторов. Полупроводниковые тензорезисторы имеют большой динамический диапазон изменения сопротивления и поэтому могут вырабатывать значительный сигнал, не требующий усиления.

                

Расчёт тензорезисторов. 

До последнего времени методы расчёта тензорезисторов не были известны, и разработка преобразователей производилась чисто эмпирическим путём. Однако в связи с развитием квалиметрии измерительных преобразователей оказалось, что основные соотношения режима работы тензорезисторов достаточно хорошо описывается математически, и при проектировании тензорезисторов и сравнении новых типов с известными полезно проводить их расчёт.

Расчёт тензорезисторов сводится к определению при выбранных их размерах допускаемой тензорезистором мощности рассеяния (а следовательно, и допустимого значения тока при данном сопротивлении) или наоборот – к определению размеров тензорезистора, необходимых для обеспечения заданной мощности.

Мощность Р,  рассеиваемая в тензорезисторе, ограничена его нагревом, вызывающим появления повышенных значений погрешности. Перегрев Θ тензорезистора  по сравнению с температурой детали, на которую он наклеен, равен

            

                            ,                                     [3]

где RT – тепловое сопротивление, К/Вт; S0 – площадь поверхности теплоотдачи материала резистора, м2; ξ – коэффициент теплоотдачи, Вт/(м2∙К); Руд=Р/S0 – удельная тепловая нагрузка, Вт/м2 .

При тепловом контакте тензорезистора с деталью через слой клея и подложку отводиться в 200—300 раз больший тепловой поток, чем при теплоотдаче тензорезистора в окружающий воздух. Это объясняется тем, что коэффициент теплоотдачи в воздух равен ξ= 10 Вт/(м2 ∙К). Поэтому с высокой точностью можно считать, что практически весь тепловой поток от тензорезистора отводится через слой клея в деталь, на которую он наклеен. Отсюда площадью S0 поверхности теплоотдачи для плёночных и фольговых тензорезисторов следует считать поверхность резистора, обращённую к детали, а для проволочных – с достаточно точным приближением половину цилиндрической поверхности их проволоки.

Необходимые для расчёта значения удельной тепловой нагрузки Руд=Р/S0 большинства используемых сейчас проволочных, Фольговых и полупроводниковых тензорезисторов (с мощностью от 25 до 630 мВт и полной площадью, занимаемой решёткой, от 0,9 до 250 мм2) колеблются в очень узких пределах Руд =26 ÷ 28 кВт/м2 (или мВт/мм2). Лишь в редких случаях, используя очень тонкую подложку, удаётся достичь Руд=38 ÷ 39 мВт/мм2.

Допустимое значение тока Iдоп через тензорезистор определяется из соотношения  Р= I2R= РудS0. Так, например, для проволочных тензорезисторов с базой длиной , из n проводов в решётке с диаметром d, изготовленных из материала с удельным сопротивлением ρ,               

                                           ;                                  [4]

и допустимое значение тока

                            .                                   [5]

Для константановой проволоки ρ = 0,46∙10-6 Ом∙м, тогда при РУД=27 кВт/м2 допустимое значение тока  

                               ,

где  IДОП в амперах и d в метрах.

Погрешности измерения тензорезисторами возникают за счёт следующих основных факторов:

- влияния температуры преобразователя на его сопротивление и линейное расширение;

- ползучести характеристики, т.е. её изменения, вызываемого остаточными деформациями в преобразователи при длительном действии значительных по величине нагрузок, близких к допустимым;

- невоспроизводимости характеристики преобразования при нагрузке и разгрузке;

- изменения крутизны характеристики преобразования от времени из-за старения материалов, особенно из-за изменения свойств клеящих компонентов;

- снижения чувствительности при увеличении частоты деформаций, когда длина распространяющейся в детали звуковой волны деформации становятся соизмеримой с базой преобразователя.

Наиболее существенное влияние на величину погрешности имеет первый фактор. Изменение сопротивления преобразователя от изменения температуры соизмеримо с изменением сопротивления от действия деформации. Температура тензорезистора зависит от температуры окружающей среды и величины тока, протекающего через резистор. Изменения температуры должно учитываться при обработки результатов путём введения коррекций или, что более желательно, автоматической компенсацией температурной погрешности. Для снижения температурной погрешности используют несколько путей:

- выбирают материал для тензорезистора с малым температурным коэффициентом линейного расширения, близким к коэффициенту расширения детали;

- применяют компенсационные преобразователи, располагаемые в непосредственной близости от однотипного рабочего, но не подвергаемы действию деформации;

- используют самокомпенсирующие тензорезисторы, состоящие из двух частей. Одна часть обладает положительным температурным коэффициентом сопротивления, вторая – отрицательным. Правильным подбором величин и температурных  коэффициентов сопротивлений частей датчика добиваются высокой степени компенсации температурной погрешности. Особенно широкое применение такой способ нашёл при изготовлении полупроводниковых тензорезисторов.

Основная погрешность выпускаемых в настоящее промышленностью проволочных и фольговых тензорезисторов при компенсации температурной погрешности не превышает 1%.

       Конструкция тензорезисторов.

В технике измерения неэлектрических величин тензорезисторы используются по двум направлениям.

Первое направление – использование тензоэффекта проводника, находящегося в состоянии объёмного сжатия, когда естественной входной величиной преобразователя является давление окружающего его газа или жидкости. На этом принципе строятся манометры для измерения высоких и сверхвысоких давлений, преобразователи которых представляют собой катушку провода (обычно манганинового) или полупроводниковый элемент (чаще всего германиевый или кремниевый), помещённые в область измеряемого давления (жидкости или газа). Выходной величиной преобразователя является изменение его активного сопротивления.

Второе направление – использование тензоэффекта растягиваемого или сжимаемого тензочувсвительного материала. При этом тензорезисторы применяются в виде «свободных» преобразователей и в виде наклеиваемых.

«Свободные» преобразователи выполняются в виде одной или ряда проволок, закреплённых по концам между подвижной и неподвижной деталями и, как правило, выполняющих одновременно роль упругого элемента. Естественной входной величиной таких преобразователей является весьма малое перемещение подвижной детали.

Устройство наиболее распространённого типа наклеиваемого проволочного тензорезистора изображено на рисунке 1. На полоску тонкой бумаги или лаковую плёнку 2 наклеивается так называемая решётка из зигзагообразно уложенной тонкой проволоки 3 диаметром 0,02 – 0,05 мм.         К концам проволоки присоединяются (пайкой или сваркой) выводные медные проводники 4. Сверху

преобразователь покрывается слоем лака 1. Такой преобразователь, будучи приклеенным к испытуемой детали, воспринимает деформации её поверхностного слоя. Таким образом, естественной входной величиной наклеиваемого тензопреобразователя

является деформация поверхностного слоя детали, на которую он наклеен, а выходной – изменение сопротивления преобразователя, пропорциональное этой деформации.

Измерительной базой преобразователя является длина детали, занимаемая проволокой. Наиболее часто используется преобразователи с базами 5 – 20 мм, обладающие сопротивлением 30 – 500 Ом.

Кроме наиболее распространённой петлевой конструкции проволочных тензорезисторов, существуют и другие. При необходимости уменьшения измерительной базы преобразователя (до 3 – 1 мм) его изготовляют двухслойным так называемым витковым способом, который заключается в том, что на оправке круглого сечения на трубку из тонкой бумаги наматывается спираль из тензочувсвительной проволоки. Затем эта трубка проклеивается, снимается с оправки, расплющивается и к концам проволоки прикрепляются выводы.

Когда надо подучить от цепи с тензорезистором ток большой величины, часто используют «мощные» проволочные тензорезисторы.

Они состоят из большого числа (до 30 – 50) параллельно соединенных проволок, отличаются большими габаритами (длина базы 150 – 200 мм) и развивают мощность, достаточную для вибратора осциллографа без использования усилителей .

Фольговые преобразователи представляют собой весьма тонкую ленту из фольги толщиной 4 – 12 мкм, на которой часть металла выбрана травлением таким образом, что оставшаяся его часть образует показанную на рисунке 2 решётку с выводами.

В последние годы появился ещё один способ массового изготовления тензорезисторов, заключающийся в вакуумной возгонке тензочувсвительного материала и последующей конденсации его на подложку. Такие тензорезисторы получили название плёночных.

Для изготовления плёночных тензорезисторов, помимо металлических материалов (например, титаноалюминиевый сплав 48Т-2, обеспечивающий измерение деформаций до 12% при коэффициенте тензочувствительности порядка 0,2), используется также целый ряд полупроводниковых материалов, например германий, кремний (k=100÷120) и др.

При изготовлении фольговых и плёночных преобразователей можно предусмотреть любой рисунок решётки, что является существенным их достоинством.

Полупроводниковые тензорезисторы могут быть изготовлены непосредственно вырезанием из полупроводникового материала. Однако возможны и другие пути. Можно выращивать монокристаллы в виде «усов» путём конденсации паров, но получающиеся при этом тензорезисторы имеют большой разброс по размерам и свойствам. Выращивание дендритных кристаллов позволяет получить более однородные тензорезисторы. Таким способом получают тензорезисторы, предназначеные для  наклеивания на упругий элемент. Клей или цемент в этом случае исполняет роль изолятора. Наклеиваемые тензорезисторы не получили широкого применения, потому что склейка не позволяет получить безгистерезисные соединения.

Для получения наклеиваемых тензорезисторов используются диффузная или эпитаксиальная технология. В обоих случаях электрическая изоляция тензорезистора обеспечивается большим сопротивлением p-n перехода.

Тензорезисторы образуются за счёт локальной диффузии примесей в подложку. При этом тип электрической проводимости тензорезистивных плёнок должен быть противоположен типу электрической проводимости подложки. Обычно маской является оксидная плёнка, в которой методом фотолитографии вытравливаются окна соответствующих размеров.

Температура и длительность процесса диффузии определяют толщину и сопротивление получаемых тензорезисторов.

В качестве подложек применяется сапфир или шпинель. Подложка из монокристаллического сапфира обладает исключительными упругими свойствами. Сапфир весьма прочен, имеет высокую стойкость к агрессивным средам. В вакууме сапфир хорошо спаивается с металлами твёрдыми припоями.

           Схемы включения  тензорезисторов.

При измерении упругих деформаций наклеиваемый тензорезистор располагается на детали в направлении главной (измеряемой) деформации.

В пределах упругих деформаций тензорезисторы характеризует небольшое относительное изменение сопротивления.

Небольшие приращения сопротивлений тензорезисторов необходимо преобразовать в большие относительные изменения выходных электрических величин.

Чаще всего измерительной цепью является делитель напряжения либо мостовая цепь. Делитель напряжения с питанием постоянным током     (рисунок 4) применяют лишь в том случае, когда интересуются только переменной состовляющей измеряемой величины, при этом  постоянная состовляющая падения напряжения на сопротивлении  Rп тензопреобразователя, в сотни раз

превышающая переменную состовляющей, отфильтровывается разделительным конденсатором С. Во всех других случаях в качестве измерительной цепи используется цепь моста, питаемого постоянным или переменным током.

Высокую точность измерения могут обеспечить методы сравнения: нулевой и дифференциальный.

Оба метода реализуются в одной схеме включения – мостовой.

Нулевому методу соответствует равновесный режим работы моста, дифференциальному – неравновесный.

Схема простейшего моста содержит R1, R2, R3, R4 – резисторы отдельных плеч моста; источник питания U, характеризуемый внутренним сопротивлением Ri; электронный вольтметр V. Источник питания подключён к так называемой диагонали питания, вольтметр – измерительной диагонали.

Тензорезистор, воспринимающий деформации, включают в одно из плеч.

Состояние моста характеризует напряжение на измерительной диагонали.

Напряжение между точками а и б

                                                          [6]

В исходном состоянии мост уравновешен. Положив Uоб=0, получим условие равновесия моста  

                                                                                   [7]

Под действием деформации сопротивление тензометра изменяется, что можно представить как приращение резистора.

Чувствительность мостовой схемы в неравновесном режиме оценивается отношением          

                             ,                                    [8]

где R1=R и R2=nR. Из этого выражения следует, что чувствительность неравновесного моста не зависит от величин и соотношения между сопротивлениями R3 и R4, а значит и от того выполнено условие равновесия [7] или нет.

Равновесный режим моста в исходном состоянии описывается выражением [7].

Под действием деформации сопротивление активного тензометра R1 изменяется на величину ∆R1, мост разбалансирован и на измерительной диагонали появляется напряжение разбалланса.

Для равновесного режима характерно то, что мост приводится в состояние равновесия изменением величины сопротивления одного из соседних плеч, например приращением резистора R2 на величину ∆R2. Для этого в соседнее плечо включают образцовую регулируемую меру сопротивления. Условие равновесия с учётом изменения R1 на ∆R1, и R2 на ∆R2 выражено соотношением [9].

                                                           [9]

Отношение R3/R4 называют отношением плеч моста. По своей сути это масштабный коэффициент. Процесс уравновешивания может выполнятся оператором (ручное уравновешивание) или автоматически в замкнутых структурах.

Для равновесного режима использования моста характерны:

  1.  отсутствие требований к стабильности питания моста;
  2.  требование высокой чувствительности прибора, включаемого в измерительную диагональ;
  3.  высокая точность измерения, в основном определяемая точностью образцовой регулируемой меры;
  4.  линейность преобразования.

Всё это характеризует равновесный режим с положительной стороны.

К недостаткам следует отнести:

1) низкое быстродействие,

2) относительно высокую сложность автоматических устройств уравновешивания.

На точность измерения деформаций и напряжений тензорезисторами большое влияние оказывает изменение температуры. Однако мостовая цепь позволяет довольно легко исключить температурные погрешности. С этой целью в соседнее с датчиком плечо моста включается второй тензорезистор, также расположенный на детали, но в таком направлении, что измеряемая деформация не изменяет его сопротивления. В некоторых случаях преобразователи можно разместить на детали так, что они будут находиться при одинаковой температуре, но испытывать деформации разного знака. При этом наряду с термокомпенсацией в два раза повышается чувствительность преобразования.

   

                     Заключение.

Тензорезисторами называют преобразователи, осуществляющие преобразование механических деформаций в изменение электрического сопротивления. Простота конструкции, малые масса и габариты позволяют использовать тензорезисторы для измерения сил, давлений, вращающих моментов, ускорений и других величин, преобразуемых в упругую деформацию в труднодоступных местах различных машин и механизмов без изменения конструкций.

 

  Контрольные вопросы.

  1.  Дайте определение тензорезистора.
  2.  Укажите какие физические величины позволяют измерять тензорезисторы.
  3.  Назовите основные типы используемых тензорезисторов и их конструктивных исполнений.
  4.  Перечислите основные параметры и характеристики тензорезисторов.
  5.  Дайте сравнительную оценку проводниковым и полупроводниковым тензорезисторам.
  6.  Перечислите основные погрешности измерения тензорезисторами и способы устранения их влияния.

7


 

А также другие работы, которые могут Вас заинтересовать

29344. Special Literary Vocabulary 24.36 KB
  A term unlike other words directs the mind to the essential quality of the thing phenomenon or action as seen by the scientist in the light of his own conceptualization. With the increase of general education and the expansion of technique to satisfy the evergrowing needs and desires of mankind many words that were once terms have gradually lost their quality as terms and have passed into the common literary or even neutral vocabulary. Such words as 'radio' 'television' and the like have long been incommon use and their terminological...
29345. Special Colloquial Vocabulary 22.56 KB
  The first thing that strikes the scholar is the fact that no other European language has singled out a special layer of vocabulary and named it slang though all of them distinguish such groups of words as jargon cant and the like. Webster's Third New International Dictionary gives the following meanings of the term: Slang [origin unknown] 1: language peculiar to a particular group: as a: the special and often secret vocabulary used by class as thieves beggars; b: the jargon used by or associated with a particular trade profession or...
29346. Phonetic Expressive Means and Stylistic Devices 18.9 KB
  This is the way a word a phrase or a sentence sounds. The sound of most words taken separately will have little or no aesthetic value. The way a separate word sounds may produce a certain euphonic impression but this is a matter of individual perception and feeling and therefore subjective. In poetry we cannot help feeling that the arrangement of sounds carries a definite aesthetic function.
29347. Lexical Expressive Means and Stylistic Devices 21.57 KB
  By being forcibly linked together the elements acquire a slight modification of meaning. The elevated ancestors simile unhallowed disturb in the now obsolete meaning of tear to pieces are put alongside the colloquial contraction the Country's the country is and the colloquial done for. Interaction of different of different types of lexical meaning Words in context as has been pointed out may acquire additional lexical meanings not fixed in dictionaries what we have called contextual meanings. The latter may sometimes deviate from...
29348. Interaction of primary and derivative logical meanings. Stylistic Devices Based on Polysemantic Effect, Zeugma and Pun 23.92 KB
  Epithet is a stylistic device based on the interplay of emotive and logical meanings in an attributive word emotionally colored attitude of the speaker to the object he describes. 1 – refer the mind to the concept due to some quality of the object it is attached to. 2 – attributes used to characterize the object by adding a feature unexpected in it. One of the two members of oxymoron illuminates the feature observed while the other one offers a purely subjective individual perception of the object.
29349. Syntactical expressive means and stylistic devices 23.95 KB
  Its expressive effect may be based on the absence of logically required components of speech parts of the sentence formal words or on the other hand on a superabundance of components of speech; they may be founded on an unusual order of components of speech the change of meaning of syntactical constructions and other phenomena. The object is placed at the beginning of the sentence: Talent Mr. The adverbial modifier is placed at the beginning of the sentence: My dearest daughter at your feet I fall. However in modern English and American...
29350. Particular ways of combining parts of the utterance 16.65 KB
  Particular ways of combining parts of the utterance Asyndeton Asyndeton that is connection between parts of a sentence or between sentences without any formal sign becomes a stylistic device if there is a deliberate omission of the connective where it is generally expected to be according to the norms of the literary language. Polysyndeton Polysyndeton is the stylistic device of connecting sentences or phrases or syntagms or words by using connectives mostly conjunctions and prepositions before each component part as in: The heaviest...
29351. Functional Styles 19.61 KB
  Therefore functional style of language is a historical category. Thus the FS of emotive prose actually began to function as an independent style after the second half of the 16th century; the newspaper style budded off from the publicistic style; the oratorical style has undergone considerable fundamental changes and so with other FSs The development of each style is predetermined by the changes in the norms of standard English. The BellesLetters Style We have already pointed out that the belleslettres style is a generic term for three...
29352. Functional Styles. Newspaper Style 33.05 KB
  Not all the printed materials found in newspapers come under newspaper style. Only materials which perform the function of informing the reader and providing him with an evaluation of information published can be regarded as belonging to newspaper style. English newspaper style can be defined as a system of interrelated lexical phraseological and grammatical means which is perceived by the community as a separate linguistic unity that serves the purpose of informing and instructing the reader.