22166

ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ 1. Природа и получение ультразвуковых колебаний 1. ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ. Природа и получение ультразвуковых колебаний Упругие механические колебания распространяющиеся в воздухе воспринимают обычно как звуки.

Русский

2013-08-04

319.5 KB

54 чел.

                                          Содержание

 

Введение                                                                                                                                        Глава 1. ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ

          1.1. Природа   и  получение   ультразвуковых    колебаний

          1.2  Свойства ультразвука

  1.  Методы ультразвуковой дефектоскопии
    1.  Применение ультразвука

Глава 2. ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ

2.1 Исторический обзор

2.2  Классификация преобразователей

2.3  Конструктивные особенности преобразователей

2.4  Выбор акустических параметров

2.5  Резонансная частота ичувствительность

2.6  Специальные преобразователи и контактные среды

  1.  Электромагнитные ультразвуковые преобразователи
    1.  Пьезоэлектрические преобразователи
    2.  Термин “пьезоактивность”
    3.   Проявления пьезоактивности
    4.   Область применения пьезоэлектрических преобразователей
    5.   Погрешности пьезоэлектрических преобразователей

 Заключение                                                                                                         

 Контрольные вопросы                                                                                                                                               

 Список используемой литературы                                                                         

Введение

В настоящее время широкое применение в науке и технике нашло одно из физических явлений природы – УЛЬТРАЗВУК.

На основе этого явления создано и продолжает создаваться и проектироваться множество, весьма различных устройств.

Ученными были обнаружены прямой и обратный пьезоэффекты, в которых проявляется связь между упругим и электрическим или магнитным состояниями пьезоматериалов. Они могут быть использованы для преобразования электрической энергии в механическую и обратно. Устройство, осуществляющее такое преобразование, называется преобразователем. В качестве материалов для преобразователей применяются вещества с сильно выраженной связью упругого и электрического или магнитного состояний.

Самые распространенные из них – это ультразвуковые преобразователи. Это устройства преобразующие в ультразвуковые колебания, колебания другого рода. Например: механические, электрические и т.д.

При помощи ультразвуковых преобразователей сейчас можно исследовать различные тела, явления. Как например: расстояние, скорость, наличие дефектов, твердость и т.д.

Глава  1.  ФИЗИЧЕСКИЕ ОСНОВЫ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ.

1.1. Природа   и  получение   ультразвуковых    колебаний

Упругие механические колебания, распространяющиеся в воздухе, воспринимают обычно как звуки. Это — акустические колебания. Если их частота более 20 000 Гц (20 кГц), т. е. выше порога слышимости для человеческого уха, то такие колебания называют ультразвуковыми (УЗК). В дефектоскопии наиболее часто используют диапазон частот 0,5—10 МГц     (1 МГц=106 Гц).

Упругие колебания могут быть возбуждены в твердых, жидких и газообразных средах. При этом колебательное движение возбужденных частиц благодаря наличию упругих сил между ними вызывает распространение   упругой   УЗ-волны,   сопровождаемое    переносом энергии.

Для получения УЗ-колебаний применяют пьезоэлектрические, магнитострикционные, электромагнитно-акустические (ЭМА) и другие преобразователи. Наибольшее распространение получили пьезоэлектрические преобразователи, изготовленные из пьезокерамических материалов или из монокристалла кварца. На поверхности пьезопластины наносят тонкие слои серебра, служащие электродами. При подаче на пьезопластину электрического напряжения она изменяет свою толщину вследствие так называемого обратного пьезоэлектрического эффекта. Если напряжение знакопеременно, то пластина колеблется в такт этим изменениям, создавая в окружающей среде упругие колебания. При этом пластина работает как излучатель. И наоборот, если пьезоэлектрическая пластина воспринимает импульс давления (отраженная УЗ-волна), то на ее поверхности вследствие прямого пьезоэлектрического эффекта появляются электрические заряды, величина которых может быть измерена. В этом случае пьезопластина работает как приемник.

 Процесс распространения ультразвука в пространстве является волновым. Граница, отделяющая колеблющиеся частицы среды от частиц, еще не начавших колебаться, называется фронтом волны. Упругие волны характеризуются скоростью распространения С, длиной волны А, и частотой колебаний f. При этом под длиной волны понимается расстояние между ближайшими частицами, колеблющимися одинаковым образом (в одинаковой фазе). Число волн, проходящих через данную точку пространства в каждую секунду, определяет частоту УЗ-колебаний. Длина волны связана со скоростью ее распространения соотношением

1.2. Свойства ультразвука

УЗ-колебания от генератора-излучателя ИП распространяются в материале изделия. При наличии дефекта Д образуется отраженное поле. За дефектом при его значительных размерах  имеется акустическая тень. Регистрируя с помощью приемника-преобразователя П ослабление УЗ-волны или с помощью преобразователя П2 (или ИП) эхо, т. е. отраженную УЗ-волну, можно судить о наличии дефектов в материале. Это является основой двух наиболее распространенных методов УЗ-контроля: теневого и эхо-метода.

Рассмотрим наиболее важные дефектоскопические свойства УЗК: направленность УЗК, ближняя и дальняя зоны преобразователей, отражение УЗК от несплошностей, затухание.

Направленность УЗК. При излучении пьезоэлементом импульса УЗК в среде возникает УЗ-поле, которое имеет вполне определенные пространственные границы.

Направленность УЗ-поля удобно представлять в виде графика в полярных координатах, называемого диаграммой направленности. Диаграмма характеризует угловую зависимость  амплитуды поля в дальней зоне. Полярный угол  отсчитывают от полярной оси,  совпадающей с направлением излучения максимальной амплитуды.

Ближняя и дальняя зоны.  Направленность УЗ-пучка распространяется  в дальней зоне или зоне Фраунгофера. В ближней зоне, называемой зоной Френеля, амплитуда поля осциллирует (изменяется) как вдоль оси, так и по сечению пучка, а УЗ-волна при этом распространяется почти без расхождения.  Для увеличения ближней зоны преобразователя - увеличивают диаметр излучателя, сужают направленность пучка.

Отражение от несплошностей. Это свойство УЗ-волн служит основой для их использования в эхо-импульсном методе дефектоскопии материалов. При падении волны на поверхность раздела двух сред в общем случае часть энергии проходит во вторую среду, а часть отражается в первую. Если УЗ-волна перпендикулярна к границе двух сред, то проходящая и отраженная волны будут такого же типа, что и падающая. Коэффициент отражения R как отношение интенсивностей отраженной и падающей волн зависит от соотношения удельных акустических сопротивлений первой и второй сред и не зависит от направления УЗК через границу раздела сред. Коэффициент прохождения волны D=1-R. Чем больше разница в акустических сопротивлениях, тем больше интенсивность отраженной волны.

Если размеры дефектов малы, то УЗ-волны огибают небольшую несплошность без существенных отражений.

Свойство отражения УЗ-волн служит основой для выявления несплошностей в металлах, поскольку акустические свойства таких дефектов, как поры, шлаки, непровары, существенно отличаются от свойств основного металла. Коэффициент отражения от трещин, несплавлений и пор близок к единице, если величина их раскрытия более 10-4 мм, а поперечный размер соизмерим с длиной волны.

Оксидные плены, особенно в сварных швах алюминиевых сплавов или при контактной сварке, выявляются плохо, несмотря на их достаточно большое раскрытие и протяженность. Причиной этого является близость акустических свойств дефекта и металла.

Затухание. Коэффициент затухания  возрастает с увеличением частоты не линейно, а в повышенной степени. Причем коэффициент затухания различен для различных материалов и складывается из коэффициентов поглощения и рассеяния

Поглощенная звуковая энергия переходит в теплоту. Рассеянная энергия остается по форме звуковой, но уходит из направленного пучка, отражаясь от неоднородной среды. В однородных средах (пластмасса, стекло) затухание определяется главным образом поглощением ультразвука:    Причем  пропорционально либо f (стекло), либо f (пластмассы).

В металлах рассеяние преобладает над поглощением: брп, причем бп пропорционально f, а бр пропорционально Р или р. Коэффициент рассеяния в металлах  зависит  от  соотношения средней величины зерен D и длины

УЗ-волны. 

При распространении УЗ-волн в металлах возможна реверберация — постепенное затухание колебаний, обусловленное повторными отражениями. Реверберация может быть объемной (из-за многократного отражения колебаний от поверхностей, ограничивающих контролируемое изделие) и структурной (из-за многократного отражения и рассеяния колебаний границами зерен металла).

Коэффициент затухания выражают либо в децибелах на метр (дБ/м), либо в неперах на метр (Нп/м). Затухание 1 Нп/м означает, что на расстоянии 1 м амплитуда волны уменьшается в е раз (е=2,718 — основание натуральных логарифмов, или число Непера). Эти единицы связаны соотношением 1 Нп/м = 8, 68 дБ/м.

В практике УЗ-дефектоскопии коэффициент затухания часто измеряют в Нп/см или, что то же самое, в см-1.

1.3. Методы ультразвуковой дефектоскопии

Для контроля материалов и сварных соединений применяют следующие основные методы УЗ-дефектоскопии.

Прежде всего — импульсный эхо-метод (рис. 1.1, а), основанный на отражении УЗ-колебаний от несплошности (отражателя), причем амплитуда эхо-сигнала пропорциональна площади этого отражателя. Этим методом контролируют поковки, штамповки, прокат, термообработанное литье, пластмассы, измеряют толщину металлов и оценивают структуру материалов. Эхо-метод широко используют для контроля сварных соединений. Чувствительность эхо-метода высокая: она достигает 0,5 мм2 на глубине 100 мм. К преимуществам данного метода следует также отнести возможность одностороннего доступа к зоне шва, поскольку достаточно только одного преобразователя и для излучения и для приема УЗ-сигналов. Недостатки эхо-метода — это сравнительно низкая помехоустойчивость и резкое изменение амплитуды отраженного сигнала от ориентации дефекта (угла в между УЗ-лучом и плоскостью отражателя).

Рис.1.1.Схемы использования основных методов УЗ-контроля:

а — эхо-метод;  б — теневой; в — зеркально-теневой; г — эхо-зеркальный;    д — эхо-теневой.

Теневой и зеркально-теневой методы, также широко распространенные, основаны на уменьшении амплитуды УЗ-колебаний вследствие наличия несплошности на их пути (рис. 1.1, б, в). Чем крупнее дефект, тем слабее прошедший к приемнику сигнал. В теневом методе (рис. 1.1,  б) УЗ-луч идет прямо от генератора к приемнику через контролируемый металл. Теневой метод применяют в основном для контроля проката малой и средней толщины, некоторых резиновых изделий (покрышек колес), для исследования упругих свойств стеклопластиков, бетона, графита и т. д. В отличие от эхо-метода теневой метод имеет высокую помехоустойчивость и слабую зависимость амплитуды от угла  ориентации дефекта. Однако имеются серьезные недостатки: необходимость двустороннего доступа и малая точность оценки координат дефектов.

Зеркально-теневой метод отличается от теневого тем, что регистрирует уменьшение УЗК, отраженных от нижней поверхности листа (рис. 1.1, в).

Зеркально-теневой метод, как видно из схемы, не требует двустороннего доступа к соединению. Этот метод широко используют для контроля железнодорожных рельсов. Он позволяет также более достоверно определять наличие корневых дефектов в стыковых швах.

Оба теневых метода используют обычно для соединений с грубообработанной поверхностью. Например, их успешно применяют для контроля стыков арматуры периодического профиля.

Эхо-зеркальный метод (рис. 1.1, г) основан на сравнении амплитуд обратно-отраженного  и зеркально-отраженного  сигналов от дефекта.

Основное преимущество эхо-зеркального метода — высокая выявляемость плоскостных дефектов и возможность оценки их формы по специальному коэффициенту. Ограничения данного метода: применение только для металла больших толщин (более 40 мм); сравнительно большой пороговый размер выявляемоcти дефектов округлой формы (диаметр не менее 3 мм).

Иногда используется эхо-теневой метод. В этом случае о наличии дефекта судят одновременно по эхо-импульсу от несплошности и по ослаблению однажды отраженного донного сигнала (рис. 1.1, д).

Эхо-теневой метод применяют при механизированном контроле сварных стыков труб. Он дает большую вероятность обнаружения дефектов и возможность оценки их характера, а также позволяет вести контроль за качеством акустического контакта при наличии сложной многоканальной аппаратуры.

В зависимости от метода УЗ-дефектоскопии и вида объекта контроля используют разные схемы соединения преобразователей. При эхо-методе широко применяют совмещенную схему ИП, когда один пьезоэлемент слу-жит сначала излучателем зондирующего импульса, а потом приемником (рис. 1.1, а) отраженного от дефекта сигнала.    

В теневом и зеркальном методах (рис. 1.1, б, в) применяется раздельная схема соединения преобразователей: один из них служит излучателем энергии (от генератора), а другой принимает прошедший через контролируемое соединение импульс.

Наконец, для эхо-зеркального и эхо-теневого методов используют раздельно-совмещенную (PC) схему соединения двух преобразователей, когда каждый из них может поочередно быть либо излучателем, либо приемником (рис. 1.1, г, д).

Рассмотрим также другие методы акустического контроля.

Метод акустической эмиссии занимает особое место. Можно сказать, что это метод технической диагностики, а не дефектоскопии. Он основан на регистрации акустических волн, излучаемых дефектом при нагружении материала или конструкции. Причиной образования упругих волн являются пластическая деформация, процессы движения дислокации кристаллов, возникновение и развитие трещин. Метод применим для ответственных высоконагруженных сварных соединений: сосудов высокого давления, трубопроводов, летательных аппаратов и других конструкций. Для регистрации акустической эмиссии требуется высокочувствительная аппаратура, работающая в широком диапазоне частот от килогерц до мегагерц.

Резонансный метод основан на определении резонансных частот, при которых в исследуемом участке изделия (по толщине листа или трубы) укладывается целое число полуволн УЗК. Исчезновение резонансов — это сигнал о наличии дефекта или изменении толщины.

Метод акустического импеданса заключается в регистрации УЗ-колебаний стержня, опирающегося на поверхность изделия. Подповерхностные дефекты изменяют акустический импеданс данного участка изделия, что отражается на амплитуде и частоте собственных колебаний стержня.

Велосиметрический метод связан с регистрацией изменения скорости УЗ-колебаний. Такое изменение имеет место в слоистых конструкциях при изменении толщины слоя или наличии расслоений.

1.4.Применение ультразвука

В настоящее время ультразвук широко применяется в разных областях науки и промышленности. Для различных целей непосредственно используются физическое, химическое или биологическое действия ультразвука. Ультразвуковые волны применяются и как средство связи для обмена информацией или ее получения. В наши дни в качестве излучателей ультразвуковых волн применяются главным образом ультразвуковые преобразователи, основанные на принципе преобразования электрической энергии в акустическую; те же преобразователи играют роль приемников ультразвуковой энергии.

Для научных целей ультразвук применяется в качестве средства исследования природы или свойств различных объектов на основе анализа ультразвуковых колебаний с сопровождающими их физико-химическими или биологическими явлениями.

Методы непосредственного применения ультразвуковой энергии можно подразделить на две категории: 1) использование различных воздействий ультразвуковой кавитации, возникающей в жидкостях, и 2) использование других явлений, не обязательно связанных с кавитацией. Ультразвуковая кавитация, возбуждаемая в жидкой среде, производит физические и химические действия, такие, как дегазация, гомогенизация, диспергирование, частичная агломерация, окисление, эмульгирование, деполимеризация высокополимерных соединений и т. д. Для промышленного применения этих воздействий ультразвука в настоящее время серийно выпускается аппаратура различного назначения и разных размеров. Наряду с общепринятым применением ультразвуковых вибрационных систем или установок ультразвуковой очистки в металлургии, машиностроении, химической или текстильной промышленности аппаратура средних и малых размеров используется в госпиталях для очистки медицинских инструментов. Очень малые установки ультразвуковой очистки теперь можно увидеть даже в оптических и часовых мастерских.

Применение ультразвуковых волн для связи распространилось на самые различные области. Так, одной из широких областей подобного применения является измерение глубин с помощью ультразвука. В ультразвуковом эхолоте импульсный электрический сигнал возбуждает преобразователь, который излучает в воду ультразвуковой импульс; акустический эхо-сигнал, отраженный от дна, принимается с помощью преобразователя, который превращает его в электрический сигнал. Преобразованный эхо-сигнал затем усиливается и поступает в соответствующий прибор, где измеряется промежуток времени между моментами излучения и приема, определяющий глубину. В ультразвуковых рыбопоисковых приборах механизм определения местоположения рыбного косяка такой же, как и при ультразвуковом измерении глубин. В ультразвуковых активных гидролокаторах — сонарах — направление излучения и приема ультразвука обычно горизонтально, так что в воде могут быть обнаружены любые цели, а также измерены их азимуты и расстояния до них.

В большинстве упомянутых выше случаев применения ультразвука, исключая хирургию, частота ультразвуковых волн обычно заключена в диапазоне от 5 до 100 кГц, в котором широко используются магнитострикционные преобразователи, конкурирующие с пьезоэлектрическими или, пьезокерамическими преобразователями.

Импульсный ультразвуковой эхо-метод находит также применение для обнаружения дефектов в стали и других материалах или в готовых деталях машин. Ультразвуковые дефектоскопы, основанные на этом принципе, широко используются для целей контроля как в тяжелой индустрии, так и в машиностроении. Тот же принцип используется в медицинской диагностике, и приборы, основанные на нем, широко применяются в повседневной практике в медицинских клиниках. В этих случаях частота ультразвука обычно лежит между 0,5 и 10 МГц, поэтому для преобразователей используются кристаллы кварца, пьезокерамика типа ЦТС или другие

пьезоэлектрические материалы.

Рис.1.2. Механический фильтр.

Ультразвук находит применение и при конструировании волновых фильтров. Механическая цепочка (Рис. 1.2), собранная из соответствующего числа механически связанных цилиндров, круглых дисков или других твердых резонаторов, оказывает фильтрующее действие на распространяющиеся вдоль нее ультразвуковые волны. Электрические сигналы системы связи преобразуются в механические колебания с помощью электромеханического преобразователя, связанного с цепочкой, а ультразвуковые волны, достигающие противоположного конца цепочки, снова преобразуются в электрический сигнал с помощью другого преобразователя, так что такая электромеханическая система может работать в качестве волнового фильтра в аппаратуре связи. Системы такого типа называются механическими фильтрами.

В качестве новейшего направления в области применения ультразвука можно упомянуть использование ультразвуковых  волн сверхвысокочастотного и высокочастотного диапазонов в качестве средства исследования физических свойств материи. Получаемые здесь интересные результаты побуждают инженеров-исследователей находить все новые технические применения, такие, как ультразвуковые линии задержки, ультразвуковые усилители с бегущей волной и т. д. Преобразователи для излучения и приема таких гиперзвуковых волн (высокочастотных и сверхвысокочастотных звуковых волн) должны иметь исключительно малую толщину, поэтому они изготавливаются обычно в виде напылённых тонких пленок из пьезоэлектрических веществ или в виде диффузионных или обедненных слоев некоторых пьезоэлектрических полупроводников. Так как методы изготовления преобразователей для этих частотных диапазонов относятся к весьма специальной области техники, в данной книге они не описываются. Но теория и методы расчета таких преобразователей не слишком отличаются от приведенных здесь.

При всем разнообразии ультразвуковых установок общим для них является, то, что полезный эффект достигается за счет энергии ультразвуковых упругих колебаний. В состав любой ультразвуковой  установки входят источник энергии и ультразвуковая колебательная система (преобразователь), преобразующая электрическую энергию в энергию механических ультразвуковых колебаний.

Наиболее распространенным типом преобразователей являются электроакустические (в частности, магнитострикционные или пьезоэлектрические). Источником энергии в этом случае является полупроводниковый или ламповый электрический генератор ультразвуковой частоты. Используются также механоакустические источники ультразвуковых колебаний, преобразующие механическую энергию (например, энергию сжатого газа) в ультразвуковую.

В качестве трансформатора упругих колебаний в установках чаще всего используют продольно-изгибную систему, состоящую из концентратора продольных колебаний и волновода изгибных колебаний. Преобразователь, устройство для охлаждения, трансформатор упругих колебаний и инструмент образуют ультразвуковую колебательную систему. В состав колебательной системы входят также элементы, обеспечивающие крепление ее к корпусу установки.

Глава 2. ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКОВЫЕ ПРЕОБРАЗОВАТЕЛИ.

2.1.Исторический обзор

Можно сказать, что ультразвуковые преобразователи родились в воде. В 1826 г. в одном озере (Речь идет об опытах Колладоне и Штурма на Женевском озере.— Прим. ред.)) впервые была измерена скорость распространения звука в воде с помощью церковного колокола. Еще до этого эксперимента Леонардо да Винчи отметил, что вода хорошо проводит звук. Однако можно вполне определенно считать, что эксперимент 1826 г. является первым случаем применения для излучения звука в воду резонансного устройства.

В дальнейшем подводные колокола, возбуждаемые электромагнитными или пневматическими молоточками, использовались для измерения глубин акустическим методом и для других навигационных целей. По своей форме подводный сигнальный колокол (Рис.2.1) отличался от церковного. Край его был сделан очень толстым, чтобы улучшить резонансные свойства колокола при работе в воде, акустический импеданс которой более чем в 3000 раз превышает акустический импеданс воздуха.

В качестве гидрофонов в то время использовались угольные микрофонные капсулы, заключенные в металлический корпус.

Рис 2.1. Подводный сигнальный колокол.

Для получения повышенной акустической мощности в течение некоторого времени использовались водяные сирены, подвижная часть которых вращалась в водяном баке, прикрепленном к внутренней поверхности корпуса корабля. Но в 1907 г. Появился генератор Фессендена (Рис 2.2), который и был применен для подводной сигнализации.

Рис. 2.2. Генератор (преобразователь) Фессендена.

Генератор был создан на основе индукционного (асинхронного) двигателя с использованием электродинамического эффекта. Колебания толстой металлической диафрагмы возбуждались толстой медной трубкой определенной длины, которая могла свободно перемещаться в осевом направлении в сильном постоянном радиальном магнитном поле. Первичная обмотка, по которой протекал переменный ток, была намотана на расположенный внутри сердечник таким образом, что медная трубка представляла собой единственный короткозамкнутый виток вторичной обмотки. Индуцированный в медной трубке вторичный ток, взаимодействуя с постоянным полем, создавал переменную механическую силу. Механическая система генератора была очень массивной, чтобы преодолевать большой акустический импеданс среды. Переменный ток подводился от высокочастотного генератора, и частота выбиралась равной резонансной частоте диафрагмы, соприкасающейся с водой, так как эффективность электроакустического преобразования при возбуждении вне механического резонанса заметно падает. Генераторы Фессендена с резонансными частотами 540, 1050 и 3000 Гц выпускались промышленностью и в течение довольно длительного времени использовались на практике для подводной сигнализации и измерения глубин акустическим методом.

Вплоть до тех отдаленных времен ультразвуковые волны совсем не использовались. Но при разумных габаритах излучателя звук слышимых частот распространяется в воде ненаправленно. Кроме того, слышимый звук может очень раздражать пассажиров и команду корабля. С этих точек зрения, а также с учетом определенных военных применений стала ясна необходимость использования ультразвуковых волн. В 1920 г. появился подходящий ультразвуковой излучатель, предназначенный для сигнализации с подводных лодок и названный излучателем Ланжевена  (Рис 2.3). Этот излучатель представляет собой мозаику, набранную из кусков кварца Х-среза и заключенную между двумя толстыми металлическими пластинами. Если к пластинам приложено переменное электрическое напряжение, то в кристаллах кварца возникает пьезоэлектрическая вынуждающая сила, и они вместе с жестко связанными с ними пластинами начинают колебаться как единая механическая система. Частота возбуждающего электрического напряжения выбирается равной частоте основной продольной моды колебаний этой трехслойной структуры. (В первое время на практике, по-видимому, использовались частоты 17, 45 кГц и т. д.) Поверхность металлической пластины, обращенная к воде, совершает поршневые колебания, и направленность излучателя оказывается достаточной при диаметре пластины порядка 30— 40 см. Противоположная поверхность другой пластины соприкасается обычно с воздухом, так что она не дает акустического излучения.

Рис 2.3. Излучатель (преобразователь) Ланжевена.

В 1933 г. были изобретены магнитострикционные вибраторы из тонких листов металла. Колеблющийся сердечник такого вибратора изготавливается в виде набора сотен склеенных между собой тонких пластин, отштампованных из листового никеля (Рис 2.4).

Рис 2.4. Магнитострикционные вибраторы (преобразователи), набираемые из пластин.

Электрические обмотки размещаются в предусмотренных при штамповке окнах. Магнитострикционная вынуждающая сила создается переменным током, частота которого выбирается обычно равной частоте механического резонанса сердечника. Толщина отдельной пластины выбирается в соответствии с рабочей частотой с учетом магнитной проницаемости и электрического сопротивления материала так, чтобы потери на вихревые токи не превышали некоторого значения, поскольку они являются главным фактором, определяющим электроакустический коэффициент полезного действия преобразователя.

Магнитострикционные преобразователи такого типа могли совершенствоваться за счет разработки новых сплавов, обладающих все большим и большим магнитострикционным эффектом и, следовательно, возможностью преобразования большей мощности. В отличие от этого излучатели Ланжевена, источник возбуждающей силы которых зависит от природы кристаллов кварца, обладали меньшими возможностями совершенствования. Их акустическая мощность ограничивалась напряжением пробоя кристалла. Кроме того, прочная и равномерная приклейка мозаики из кристаллов к большой поверхности металлической пластины, подверженной сильным переменным напряжениям, связана с техническими трудностями. Напротив, в магнитострикционных вибраторах склеиваемые поверхности в точности параллельны направлению. колебаний, и поскольку речь идет о переменных механических напряжениях, нет необходимости принимать меры предосторожности для обеспечения прочности склейки. Эти преимущества магнитострикционных вибраторов способствовали быстрому вытеснению ими преобразователей Ланжевена. Далее проводились исследования различных сплавов, и в 1942 г. был получен сплав алюминия с железом, названный альфером, применение которого снизило стоимость магнитострикционных преобразователей. Вибраторы из этого сплава быстро нашли широкое применение не только в ультразвуковых эхолотах, но и в рыболокаторах различных типов.

Вскоре, однако, был обнаружен большой пьезоэлектрический эффект в искусственном сегнетоэлектрике, названном керамикой титаната бария, а развитие технологических методов сделало изделия из керамики достаточно механически прочными для использования их в режиме ультразвуковых колебаний. Это произошло за промежуток времени с 1947 по 1950 г. Вынуждающая сила возникает в таком материале при воздействии на него переменного электрического поля, как и в кристалле кварца, но в данном случае нужна еще постоянная электрическая поляризация — электрическое смещение. Коэффициент электромеханической связи для керамики титаната бария значительно выше, чем для кварца, и благодаря этому снова вспомнили об излучателе Ланжевена. В связи с разработкой прочных искусственных смол, таких, как аралдит, ультразвуковые преобразователи типа Ланжевена с керамическими пластинками из титаната бария вместо кварцевой мозаики вновь вошли в практику. Высокий коэффициент электромеханической связи материала и малые диэлектрические потери в нем позволили надеяться на то, что применение таких преобразователей будет способствовать повышению общей эффективности различных ультразвуковых установок. Несмотря на то что упомянутые выше трудности, присущие технике сборки, не были преодолены и для преобразователя Ланжевена из титаната бария, он нашел достаточно широкое практическое применение в различной маломощной ультразвуковой аппаратуре, в частности в компактных рыболокаторах, где выступил серьезным конкурентом магнитострикционных преобразователей из альфера или никеля.

Рис 2.5.  Ферритовые  магнитострикционные вибраторы.

За время с 1954 по 1957 г. были получены новые полезные магнитострикционные материалы — ферриты; в результате промышленной разработки их технологии была достигнута механическая прочность ферритов, достаточная для излучения ультразвука большой мощности. Ввиду того что ферриты имеют очень высокое электрическое сопротивление, потери на вихревые токи не ощущаются для них в любом монолитном объеме материала, и вибратор может быть изготовлен сразу в окончательной форме из ферритового порошка путем прессования и последующего обжига (фиг. 1.7). Электроакустический коэффициент полезного действия ферритов, очевидно, выше, чем к. п. д. металлических магнитострикционных вибраторов, набранных из тонких пластин, и обычно превышает последний примерно в 3 раза, достигая 80—90%. Характерные преимущества магнитострикционного преобразователя по сравнению с пьезоэлектрическим присущи любому преобразователю из ферритов. Поэтому во многих областях промышленного применения ультразвука в настоящее время используются преимущественно ферритовые преобразователи.

2.2. Классификация преобразователей

Акустический излучатель - устройство,  предназначенное для  преобразования  энергии того или иного вида в звук, энергию и излучения ее в упругую среду. По виду преобразования А. и. делят на электроакустические, гидромеханические, пневмоакуcтические, парогазоакустические, взрывные и ударные. В электроакустических излучателях в звуковую энергию преобразуется электрическая энергия, гидромеханических — энергия движущейся жидкости, в пневматических — энергия движущегося сжатого воздуха, в парогазоакустических — энергия захлопывания разогретого парогазового пузыря.

Основные характеристики А. и.: резонансная  частота, излучаемая мощность, электроакустический КПД и полоса пропускания частот.

 Акустический  приемник — устройство, обеспечивающее прием акустических колебаний и измерение их параметров путем преобразования акустической  энергии в какую-либо другую (электрическую, механическую, тепловую). Наибольшее распространение получили электроакустические приемники различных типов. В зависимости от принципа действия и конструктивных особенностей А. п. могут быть приемниками звукового давления, колебательной скорости, ускорения, смещения, интенсивности звука и радиального давления.

 Для измерения звукового давления, колебательной скорости, ускорения и смещения используют те или иные разновидности электроакустических приемников; для измерения интенсивности звука — термические приемники, радиационного давления — радиометры.

 Основные характеристики А. п.: чувствительность к измеряемому параметру и пороговый, т. е. минимальный различаемый, сигнал.

Ультразвуковой пьезоэлектрический преобразователь (ПЭП) является важнейшим элементом, определяющим достоверность УЗ-контроля. Этот сложный электроакустический прибор должен обеспечивать формирование УЗ-пучка в самых разных по конфигурации контролируемых элементах.

По способам ввода УЗ-колебаний ПЭП подразделяют на контактные, щелевые, иммерсионные и бесконтактные.

В контактных ПЭП толщина контактного слоя , в щелевых , а в иммерсионных , где С — скорость распространения УЗ-колебаний в контактной жидкости; — длительность зондирующего импульса.

Контактные преобразователи нашли наибольшее применение в промышленности. Их основным недостатком является нестабильность акустического контакта в процессе сканирования преобразователя.

При контроле некоторых деталей и конструкций, когда не допускается нанесение контактной жидкости перед ПЭП (например, при обнаружении поверхностных трещин), используют щелевые (менисковые) преобразователи.

Иммерсионный ввод УЗ-колебаний чаще всего используют при автоматизированном контроле изделий небольшого размера или изделий простой геометрической формы, например труб небольшого диаметра. Иногда преобразователи с иммерсионной локальной ванной применяют при контроле по грубообработанным поверхностям.

Особую группу составляют бесконтактные ПЭП, которые возбуждают упругие колебания в металле за счет взаимодействия переменного электрического и магнитного полей.

По направлению ввода упругих колебаний в исследуемый объект ПЭП бывают прямые, наклонные, комбинированные.

По конструктивному исполнению и способу подключения к электронной части дефектоскопа пьезоэлектрические преобразователи подразделяют на совмещенные, раздельно-совмещенные (PC), раздельные.

В совмещенных ПЭП пьезоэлемент выполняет роль излучателя и приемника УЗ-колебаний.

В PC-преобразователях функции излучателя и приемника разделены, а конструктивно они выполнены в одном корпусе.

В зависимости от формы рабочей поверхности или пьезоэлемента ПЭП могут быть плоскими или неплоскими. Среди неплоских широкое распространение получили фокусирующие ПЭП.

Тип ПЭП определяют сочетанием перечисленных выше признаков:

  •  контактные прямые совмещенные;
  •  иммерсионные прямые совмещенные;
  •  контактно-иммерсионные прямые;
  •  контактные прямые PC с акустической задержкой;
  •  контактные   наклонные   совмещенные  с акустической задержкой;
  •  контактные наклонные PC с акустической задержкой.

Рис.2.6 Преобразователи:

а — прямой совмещенный контактный (/ — протектор; 2 — пьезопластина; 3 — демпфер; 4 — заливочная масса; 5 — корпус); б — прямой совмещенный с акустической задержкой (7 — твердая задержка; 2 — пьезопластина; 3 — демпфер); в — наклонный совмещенный с акустической задержкой (У —призма; 2 — пьезопластина; 3 — демпфер); г — наклонный раздельно-совмещенный с акустической задержкой (/ — призма; 2 — пьезопластина; 3 — демпфер).

2.3. Конструктивные особенности преобразователей

Основные акустические параметры наклонных преобразователей — ширина диаграммы направленности, разрешающая способность (по оси пучка), чувствительность— определяются их конструкцией, а именно: размерами и конфигурацией, углом ввода, акустическими константами призмы и степенью демпфирования.

Преобразователь состоит из следующих основных элементов: пьезопластины, демпфера, призмы, протектора и корпуса.

Пьезопластина — является основным элементом ПЭП. Ее изготавливают из пьезоэлектрических материалов: кварца, цирконата-титаната свинца (ЦТС), титаната бария и др. Пьезопластина обычно имеет толщину, равную половине длины волны УЗК в пьезоматериале на рабочей частоте. На противоположных поверхностях пластины располагаются металлические (обычно серебряные) электроды для приложения электрического поля. От формы электродов зависят работающие участки пьезопластин. Во избежание пробоя по краям пластины часто оставляют неметаллизированную полоску.

Демпфер служит для гашения свободных колебаний пьезопластины, т.е. для получения коротких УЗ-импульсов, а также для предупреждения механических повреждений пьезопластин, особенно тонких. Материал демпфера и его форма должны обеспечивать достаточно сильное затухание УЗК без многократных отражений. В некоторых ПЭП (например, наклонных) демпфер часто отсутствует.

Призма изготовляется обычно из износостойкого материала с небольшой скоростью ультразвука (оргстекло, полистирол, поликарбонат, деклон, капролон и др.), что позволяет при относительно небольших углах падения  получать углы преломления  до 90°. Размер призмы зависит главным образом от размера и формы пьезопластины.

При разработке и изготовлении преобразователей размеры, форму и материал призмы выбирают таким образом, чтобы они по возможности удовлетворяли следующим основным требованиям: обеспечивали достаточное гашение УЗК, возникающих при отражении волн на границе раздела призма — изделие, при этом незначительно ослабляли УЗК в самой призме. Кроме того, материал призмы должен обладать износостойкостью и смачиваемостью, а в ряде случаев и термостабильностью.

Протектор защищает пьезоэлемент от изнашивания и воздействия контактной жидкости, улучшает акустический контакт при контроле контактным способом. Для повышения износостойкости преобразователя к пьезопластине приклеивают протекторы толщиной 0,1 — 0,5 мм из кварца, бериллия, стали, смол с порошковым наполнителем (например, порошком из компаунда или бериллия) и т. п. Протекторы также изготавливают в виде сменных пленок из эластичных пластмасс, например из полиуретана. В этом случае между пьезопластиной и протектором вводят контактную жидкость (масло).

Корпус преобразователя обеспечивает прочность конструкции, а также экранирование пьезоэлемента и выводов от электронных помех (для этого корпус из пластмассы металлизируют).

2.4.Выбор акустических параметров при проектировании ультразвуковых устройств

При проектировании ультразвукового технологического устройства необходимо решать следующие задачи: расчет и конструирование ультразвуковой колебательной системы, подбор источников питания и проектирование кинематики перемещения отдельных узлов установки.

В процессе расчета ультразвуковых преобразователей определяют рабочую частоту, потребляемую мощность, входное электрическое сопротивление преобразователя. Этот комплекс параметров определяет возможность комплектации ультразвуковой технологической установки универсальным генератором или необходимость проектирования специализированного ультразвукового генератора.

Остальные узлы ультразвуковых технологических установок проектируют с учетом специфики конкретного технологического процесса.

Расчет и конструирование ультразвукового узла начинают с определения основных акустических параметров, которые обеспечивают заданные характеристики технологического процесса. Такими параметрами являются: частота, амплитуда колебаний (удельная акустическая мощность), площадь рабочей поверхности излучателя (инструмента). При этом в процессе проектирования ультразвукового узла в ряде случаев необходимо удовлетворить заданным ограничениям по массе и габаритным размерам.

Рабочую частоту выбирают с учетом влияния многих факторов. Для большинства технологических процессов частота колебаний определяет эффективность самого процесса. Например, при очистке, связанной с кавитационной эрозией, эффективность растет с понижением частоты в пределах ультразвукового диапазона, производительность ультразвуковой обработки при постоянной амплитуде смещений растет с увеличением частоты. При повышении частоты уменьшаются габаритные размеры и масса колебательной системы, облегчается выполнение санитарно-гигиенических требований к шуму ультразвуковых установок, но падает амплитуда колебательных смещений и КПД системы.

При определении акустической мощности необходимо учитывать назначение колебательной системы. Она может быть предназначена:

Для процессов, связанных с кавитационной активностью жидкости, оптимальное значение удельной акустической мощности для водных сред составляет Wa=l„5—2,0 Вт/см2. Этому значению удельной акустической мощности соответствует амплитуда колебательной скорости на поверхности излучателя 0,2 м/с.

Условия работы при излучении в среду характеризуются заданной площадью излучения и удельной акустической мощностью, которая определяется для данного технологического процесса.

2.5.Резонансная частота и чувствительность преобразователя

Пьезоэлектрические и магнитострикционные преобразователи являются резонансными. Поэтому расчет преобразователя следует начинать с выбора геометрических размеров, соответствующих заданной резонансной частоте. В ряде случаев необходимо решить обратную задачу — найти резонансную частоту преобразователя известных размеров.

Обычно используют симметричный магнитострикционный преобразователь, который условно можно представить как систему трех последовательно соединенных стержней. Длина среднего стержня равна высоте окна l2, длина крайних одинакова и равна толщине накладки l1. Отношение площадей поперечного сечения q=S1/S2=a/(a-b) , где a — ширина преобразователя; b — ширина окна. Резонансная частота определяется из условия   , где  ;   волновые размеры преобразователя; f—заданная частота преобразователя; с—скорость звука в материале преобразователя. График для определения волновых размеров накладки и полной длины преобразователя приведены на рис. 7.

Рис.2.7. График для определения резонансных размеров  и  симметричной колебательной системы при разном соотношении

Задачей последующих расчетов является выбор материала, определение размеров и других параметров преобразователя с целью получения заданной амплитуды колебаний на выходе преобразователя. В линейном приближении амплитуда колебаний на выходе преобразователя пропорциональна амплитуде вынуждающей силы :

, где S — площадь поперечного сечения активной части преобразователя (S=S2); —амплитуда вынуждающих напряжений. Для магнитострикционного преобразователя =—амплитуда магнитострикционных напряжений. В линейном режиме , где  —магнитострикционная постоянная; Bm — амплитуда индукции. Для пьезоэлектрического преобразователя =dikEm где dik —  пьезомодуль; Em —амплитуда напряженности электрического поля.

Внутреннее сопротивление преобразователя Zi имеет комплексный характер. Его реактивная составляющая обращается в нуль на частоте механического резонанса. При этом амплитуда колебаний достигает максимума. Активная составляющая внутреннего сопротивления преобразователя при резонансе равна сопротивлению механических потерь преобразователя Rм.п. Значение А определяется выбором конструкции преобразователя.

Амплитуда индукции в рабочей части магнитострикционного преобразователя пропорциональна напряжению на концах обмотки возбуждения: , где N — полное число витков обмотки возбуждения; Um—напряжение на входе преобразователя; S2 — площадь поперечного сечения магнитопровода

Аналогично для пьезоэлектрического преобразователя

где  l2— толщина пьезоэлемента.

С учетом приведенных формул получим выражение, позволяющее определить амплитуду колебаний при заданной величине напряжения на входе преобразователя: , где g =l2-1 для пьезокерамического  преобразователя  и   для  магнитострикционного.

Из выражения определения амплитуды колебаний следует, что отношение амплитуды колебаний на выходе к амплитуде электрического напряжения на входе зависит только от свойств преобразователя и характера нагрузки.

Итак, чтобы найти амплитуду колебаний на выходе преобразователя при заданной нагрузке Rн , необходимо знать чувствительность и сопротивление механических потерь Rм.п. для магнитострикционного или составного пьезоэлектрического преобразователей.

2.6. Специальные преобразователи и контактные среды

Если один современный дефектоскоп может быть использован для контроля практически любой дефектоскопической продукции, то вариации в геометрии и типоразмере сварных швов требуют применения различных преобразователей. Полная унификация здесь невозможна. Поэтому преобразователи разрабатываются для контроля конкретных швов.

Преобразователи для контроля швов труб. Основной трудностью при УЗ-контроле сварных стыков труб с толщиной стенки менее 10 мм является наличие ложных эхо-сигналов от обратного валика шва, мало отличающихся по времени и амплитуде от ожидаемых сигналов от дефектов. Кроме этого, из-за большой ширины валика шва, которая в 2—3 раза превосходит толщину стенки трубы, нельзя приблизить преобразователь к шву настолько, чтобы обеспечить прозвучивание центра шва акустической осью диаграммы преобразователя.

Преобразователи для контроля по грубой поверхности. Рассмотрим некоторые конструкции специальных преобразователей, применяющихся для контроля металла и сварных швов по грубой поверхности.

Широкое применение нашли эластичные преобразователи с герметизированной иммерсионной локальной ванной, внутри которой размещен пьезоэлемент. Эти преобразователи обеспечивают высокую стабильность чувствительности, однако имеют следующие недостатки: большие габариты, относительно высокий уровень реверберационных шумов, нестабильный угол ввода ультразвука в контролируемое изделие, необходимость частой замены резинового донышка ванны вследствие проколов. Эти недостатки отсутствуют у наклонных преобразователей, на рабочую поверхность которых наклеена резина. Однако преобразователи такой конструкции недолговечны.

Преобразователь ИЦ-15Б со свободно скользящим трубчатым протектором не имеет указанных недостатков. В качестве материала протектора в нем используется маслостойкая резина, из которой изготавливается кольцо диаметром 28—30 мм, толщиной 0,8—1,2 мм. В кольце делается большое число проколов или сверлений. При перемещении преобразователя по изделию эластичный протектор вращается, облегает неровности контролируемого металла, что способствует улучшению акустического контакта. В зазор между преобразователем и протектором вводится масло.

Преобразователи с иммерсионной локальной ванной и менискового типа фактически не требуют специальной подготовки поверхности. Они закрепляются внутри кожуха с регулируемым контактным зазором. С помощью штуцеров и двух трубок внутренний объем кожуха соединен с герметичным бачком для воды. При работе в бачке создается небольшое разряжение, которое удерживает воду внутри кожуха; в результате создается стабильный акустический контакт даже на очень грубой поверхности. Такая конструкция обеспечивает ничтожный расход воды, но допускает возможность работы лишь в нижнем положении.

Хорошие результаты по повышению стабильности чувствительности ультразвукового дефектоскопа достигнуты при использовании капиллярных эффектов. Здесь возможны различные конструктивные решения.

Во-первых, акустическую задержку (призму) можно выполнить из капиллярно-активных слоистых материалов, подобных тем, которые используются в сердечниках фломастеров.

Во-вторых, непосредственно на рабочую поверхность обычной призмы из оргстекла можно нанести слой капиллярно-пористого протектора небольшой толщины.

В-третьих, по периферии призмы можно сделать капиллярные каналы (сверлением или фрезерованием).

Во всех конструкциях капилляры служат аккумулятором контактной жидкости и обеспечивают автоматическую подпитку контактного зазора, что ускоряет восстановление сплошности контактного слоя.

2.7. Электромагнитные ультразвуковые преобразователи

Создание контактной связи ультразвуковых колебаний с объектом контроля через жидкую среду является одним из главных факторов, сдерживающих широкое применение УЗ-контроля в производстве. Поэтому в настоящее время ведутся исследования по разработке бесконтактных способов возбуждения и приема ультразвуковых колебаний. Наибольшие успехи достигнуты при возбуждении и приеме ультразвуковых колебаний в металлах с помощью электромагнитного поля. Разработаны специальные электромагнитно-акустические преобразователи (ЭМА), принцип действия которых основан на превращении электромагнитных колебаний в акустические непосредственно поверхностью металла, находящегося в зоне преобразователя.

С помощью ЭМА-преобразователей возможно также бесконтактное возбуждение рассмотренных выше волн Лэмба, Рэлея и горизонтально поляризованных поперечных (SH) волн, применение которых перспективно при контроле тонких листов и тонкостенных конструкций.

ЭМА-преобразователи позволяют достаточно просто осуществить фокусировку ультразвуковых колебаний. В ряде случаев такая фокусировка получается естественным путем за счет кривизны поверхности изделия, в котором возбуждаются ультразвуковые колебания. Фокусировку можно осуществить также путем смещенного по фазе управления сегментными приемно-излучающими преобразователями. К недостаткам ЭМА-преобразователей относятся их более низкий (на два-три порядка) коэффициент механической связи по сравнению с пьезопреобразователями и небольшие (1—5 мм) рабочие зазоры между ЭМА-преобразователем и поверхностью контролируемого изделия. Поэтому для получения необходимой чувствительности аппаратуры ультразвукового контроля с ЭМА-преобразователями мощность зондирующих импульсов, поступающих на ЭМА-преобразователь, должна быть существенно больше, чем при использовании пьезопреобразова-телей. Как показали исследования, удовлетворительная чувствительность аппаратуры с ЭМА-преобразова-телями при рабочих зазорах до 5 мм получается при индукции постоянного магнитного поля в зазоре  0,7—1,0 Тл.

ЭМА-преобразователи перспективны для автоматизированного ультразвукового контроля качества металлопродукции в технологическом потоке производства, в том числе и при высокой температуре.

2.8. Пьезоэлектрические преобразователи

Пьезоэлектрическими называются кристаллы и текстуры, электризующиеся под действием механических напряжений (прямой пьезоэффект) и деформирующиеся в электрическом поле (обратный пьезоэффект). Особенностью пьезоэффекта является знакочувствительность, т. е. изменение знака заряда при замене сжатия растяжением и изменение знака деформации при изменении направления поля.

Пироэлектрики представляют собой особую разновидность пьезоэлектрических кристаллов и отличаются от собственно пьезоэлектриков тем, что их ячейка имеет одно или несколько взаимно неуравновешенных полярных направлений. Благодаря этому указанная кристаллов поляризуется при всестороннем гидростатитепловом расширении, откуда и происходит название «пироэлектрики». Типичным представителем пироэлектриков является турмалин.

Сегнетоэлектрики входят в группу пироэлектрических кристаллов. Характерным отличием сегнетоэлектриков является то, что их кристалл разбит на домены, в пределах которых существует упорядоченная структура и свое полярное направление. Однако полярные направления доменов ориентированы по-разному. Такое строение подобно строению ферромагнетиков, поэтому сегнетоэлек-трические материалы называют также ферроэлектрическими. Сегнетоэлектрикам присуща нелинейная зависимость плотности поляризованных зарядов от внешних воздействий (механические напряжения, температура и т. д.) и гистерезис.

Сегнетоэлектрические пьезокерамики представляют собой продукт отжига спрессованной смеси, состоящей из мелкораздробленного сегнетоэлектрического кристалла с присадками. Пьезоэлектрические свойства они приобретают после поляризации в сильном электрическом поле, направление которого и определяет полярный вектор пьезокерамики (направление поляризации в пьезокерамике обычно обозначают осью Z). В настоящее время сырьем для производства пьезокерамики наряду с титанатом бария с точкой Кюри +120° С служат титанат свинца РЬТi3 с точкой Кюри около +500 °С и цирконат свинца PbZrO3 с точкой Кюри примерно +230 °С. Наилучшие результаты получаются при использовании смесей этих материалов — так называемых цирконато-титанатов свинца (керамики типа ЦТС), которые получили сейчас самое широкое распространение, так как, обладая такой же чувствительностью, как и ВаТiO3, они обеспечивают работу преобразователя в температурном диапазоне до 200—250 °С.

2.9. Термин “Пьезоактивность”

При разработке и использовании пьезоэлектрических и магнитострикционных преобразователей постоянно имела место конкурентная борьба между ними, а ученые, технологи и инженеры, имевшие дело с ультразвуковыми преобразователями того и другого типа, часто были одними и теми же людьми.

Автор предложил в 1954 г. термин «пьезоактивные»). Этот термин был одобрен инженерами, работающими в области акустики, по крайней мере в Японии. Хотя данный термин предлагается в настоящей книге впервые и по этому вопросу могут быть разные мнения, автор надеется, что читатели будут довольны связанными с употреблением этого термина простотой описаний и удобством при рассмотрении различных явлений.

2.10. Проявление пьезоактивности

Когда никель, кобальт и другие ферромагнитные вещества претерпевают некоторую механическую деформацию, их магнитные свойства изменяются. Титанат бария и другие сегнетоэлектрические вещества под воздействием деформации меняют свои электрические свойства. Механическая деформация кристаллов кварца, сегнетовой соли, ADP и других пьезоэлектрических кристаллов приводит к их поляризации.

Если же эти вещества поместить в электрическое поле или магнитное поле, то в них возникнет механическая деформация, вызывающая небольшие изменения размеров тела. Чтобы предотвратить эти изменения, необходимо приложить внешнюю механическую силу. С другой точки зрения можно считать, что при намагничивании или поляризации вещества в нем возникает механическая сила.

Как прямой, так и обратный эффекты, в которых проявляется связь между упругим и электрическим или магнитным состояниями упомянутых выше веществ, могут быть использованы для преобразования электрической энергии в механическую и обратно. Устройство, осуществляющее такое преобразование, называется преобразователем. В качестве материалов для преобразователей применяются вещества с сильно выраженной связью упругого и электрического или магнитного состояний. Для удобства мы будем называть эти вещества пьезоактивными, а преобразователи из них — пьезоактивными преобразователями.

 2.11. Область применения пьезоэлектрических преобразователей 

1. Преобразователи, использующие прямой пьезоэффект, применяются в приборах для измерения силы, давления, ускорения.

2. Преобразователи, выполненные из материалов, обладающих пироэффектом, могут быть использованы для измерений тепловой радиации .

3. Преобразователи, использующие обратный пьезоэффект, применяются в качестве излучателей ультразвуковых колебаний, в качестве преобразователей напряжения в деформацию, например, в пьезоэлектрических реле, пьезовибраторах осциллографов, в качестве обратных преобразователей приборов уравновешивания и т. д.

4. Преобразователи, использующие одновременно прямой и обратный пьезоэффекты, — пьезорезонаторы, имеющие максимальный коэффициент преобразования одного вида энергии в другой на резонансной частоте и резко уменьшающийся коэффициент преобразования при отступлении от резонансной частоты (т. е. высокую добротность), — используются в качестве фильтров, пропускающих очень узкую полосу частот.

Пьезорезонаторы, включенные в цепь положительной обратной связи усилителя, работают в режиме автоколебаний и используются в генераторах. В зависимости от типа кристалла, среза и типа возбуждаемых колебаний пьезорезонаторы могут выполняться с высокостабильной, не зависящей от внешних факторов собственной частотой и с управляемой собственной частотой. Управляемые резонаторы используются в частотно-цифровых приборах как преобразователи различных, преимущественно неэлектрических величин (температура, давление, ускорение и т. д.) в частоту. Пьезоэлектрические генераторы могут применяться и как амплитудные преобразователи, работая в режиме изменения добротности, например, для фиксации соприкосновения колеблющегося кристалла с каким-либо телом. Пьезоэлементы, кроме того, используются в твердых схемах, заменяющих собой целый ряд электронных   устройств.

В настоящей главе рассмотрены наиболее широко распространенные преобразователи для измерения сил, давлений и ускорений и обратные преобразователи электрического напряжения в перемещение.

2.12.Погрешности пьезоэлектрических преобразователей складываются прежде всего из погрешности от изменения параметров измерительной цепи (емкости Свх), температурной погрешности, вызываемой изменением пьезоэлектрической постоянкой, погрешности вследствие неправильной  установки  пластин,   погрешности   из-за чувствительности к силам, действующим перпендикулярно измерительной  оси  преобразователя, и частотной погрешности.

Верхняя граница допустимого частотного диапазона определяется в основном механическими параметрами преобразователя. Пьезоэлектрические преобразователи могут быть выполнены с частотой собственных колебаний f0≈100 кГц, что позволяет измерять механические величины, изменяющиеся с частотой до 7 — 10 кГц.

Заключение

В приведенном выше материале были рассмотрены: теория ультразвука, ультразвуковые преобразователи.

Также были изучено применение ультразвуковых преобразователей для исследования тел. Оказалось что это очень эффективное направление научно-исследовательской работы в данной области.

Контрольные вопросы

  1.  Что такое ультразвук?
  2.  Свойства ультразвука?
  3.  Области применения ультразвука?
  4.  Что такое ультразвуковые преобразователи?
  5.  Классификация ультразвуковых преобразователей?
  6.  Области применения преобразователей?
  7.  Ультразвуковые методы исследования тел?

Список используемой литературы

 11


 

А также другие работы, которые могут Вас заинтересовать

16241. Анализ переходных процессов 143.11 KB
  Лабораторная работа № 4 Анализ переходных процессов Цель: изучить правили построения диаграмм и с их использованием научиться анализировать переходные процессы на примере зарядки и разрядки конденсаторов. Ход работы: Загрузим схему последовательного ...
16242. ПРОЕКТИРОВАНИЕ И АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СХЕМ 462.5 KB
  ПРОЕКТИРОВАНИЕ И АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СХЕМ Методические указания для выполнения лабораторных работ по дисциплинам Автоматизация проектирования Основы автоматизированного проектирования Лабораторная работа № 1 Разработка графических моделей ...
16243. ВЕЛ про поліпшення питного водопостачання та охорони вод в Україні 122 KB
  ВЕЛ про поліпшення питного водопостачання та охорони вод в Україні. Вода – найцінніший природний ресурс. Вода – основа життя вона відіграє виняткову роль у процесах обміну речовин без яких життя не можливе. Загальні запаси води на земній кулі становлять близько 1390 м...
16245. Интерфейс Adobe Photoshop. Работа с документом 948.87 KB
  Лабораторная работа № 1 Интерфейс Adobe Photoshop. Работа с документом Открытие документов в Photoshop Запустите графический редактор Photoshop Пуск → Программы → Adobe Photoshop CS2. В меню File Файл выберите команду Open Открыть. В появившемся диалоговом окне Open Открыть
16246. Изучение выпрямителей и стабилизаторов напряжения 55.5 KB
  Лабораторная работа № 11 Изучение выпрямителей и стабилизаторов напряжения 11.1. Цель работы Изучение различных схем выпрямителей и линейных стабилизаторов напряжения. 11.2. Порядок выполнения работы 11.2.1. Для исследования двухполупериодного выпрямите
16247. Созданоие приложения визуализирующего работу cash-памяти в 3-х архитектурах 200.5 KB
  Содержание: Краткая информация о процессорах семейства х-86. Кэш-память Архитектура кэш-памяти Кэш-память с прямым отображением Полностью ассоциативная архитектура Наборно-ассоциативн...
16248. Эмуляция работы программы FDisk 471 KB
  Курсовой проект по по информатике Тема: Эмуляция работы программы FDisk Краткие теоретические сведения. Конструкция HDD Рис. 1 Диск представляет собой круглую металлическую пластину с очень ровной поверхностью покрытую тонким ферро...
16249. Конфигурация функции IGMP Snooping 724.66 KB
  Лабораторная работа №1 Конфигурация функции IGMP Snooping 1 Цель работы 1.1Научиться конфигурировать протокол управления групповой multicast рассылкой на коммутаторах Dlink. 2 Литература 2.1 Смирнова Е.В. Пролетарский А.В. Баскаков И.В. Федотов Р.А. Построение комму