22176

Трансформаторные преобразователи перемещения

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

К одной из них первичной или обмотки возбуждения подводится переменное напряжение питания U а с другой вторичной или сигнальной обмотки снимается индуцированное в ней напряжение Uвых зависящее от коэффициента взаимоиндукции. Eг = jωMI1 где ω частота питающего напряжения; M взаимная индуктивность обмоток; I1 ток протекающий в цепи первичной обмотки. Включение обмотки возбуждения в сеть Чувствительность преобразователя можно увеличить за счет: Увеличения ампервитков обмотки возбуждения до индукции в стали магнитопровода 1 ...

Русский

2013-08-04

154.5 KB

57 чел.

Трансформаторные преобразователи перемещения

В авиационной технике, информационно-измерительных и вычислительных системах широко используются преобразователи перемещения. В настоящее время разработано большое разнообразие типов и конструкции таких преобразователей, среди которых широко представлены трансформаторные преобразователи.

Основной принцип действия трансформаторных (взаимоиндуктивных) преобразователей состоит в том, что изменение положения подвижного органа, воспринимающего измеряемое перемещение, вызывает изменение взаимной индукции (коэффициента взаимоиндуктивности) между двумя системами обмоток. К одной из них (первичной, или обмотки возбуждения) подводится переменное напряжение питания U~, а с другой (вторичной, или сигнальной) обмотки снимается индуцированное в ней напряжение Uвых, зависящее от коэффициента взаимоиндукции.

В качестве подвижных частей таких преобразователей чаще всего используются сердечник, обмотка и экран.

Простейший трансформаторный преобразователь изображен на рисунке 2.

Рис. 1. Простейший трансформаторный преобразователь

Якорь этого преобразователя может перемещаться вертикально, либо поворачиваться горизонтально.

Принцип работы трансформаторных преобразователей основан на изменении взаимной индуктивности между обмоткой питания и генераторной обмоткой. Изменение положения якоря приводит к изменению сопротивления магнитной цепи.

Eг = jωMI1,

где ω – частота питающего напряжения;

M – взаимная индуктивность обмоток;

I1 – ток, протекающий в цепи первичной обмотки.

Взаимную индуктивность можно определить по следующей формуле:

,

где W2 – количество витков;

Ф2 – магнитный поток.

Ток, протекающий в первичной обмотке:

,

где F1 – магнитодвижущая сила в первичной обмотке.

W1 – количество витков в первичной обмотке.

,

где  - приведенное магнитное сопротивление;

Ф2 – магнитный поток, пронизывающий вторичную обмотку.

Пренебрегая потоками рассеяния, потоками выпучивания, можно допустить, что магнитный поток, создаваемый обмоткой питания, будет равен магнитному потоку, пронизывающему вторичную обмотку. В этом случае эквивалентное сопротивление равно магнитному сопротивлению всей цепи: .

Учитывая вышеизложенные допущения, можно определить зависимость выходного напряжения от различных влияющих параметров:

,

где μ0 – постоянная магнитной проницаемости воздуха;

Qст – площадь поперечного сечения сердечника и якоря;

δ – величина воздушного зазора;

полученная зависимость верна при условии, что Rм δ = Rм ст.

Для поддержания постоянства величины тока возбуждения в таких преобразователях при значительных перемещениях сердечника необходимо увеличить общее активное сопротивление цепи возбуждения по сравнению с его индуктивным сопротивлением, для чего обмотка возбуждения включается в сеть последовательно через значительное активное сопротивление, как по рисунку 2:

Рис. 2. Включение обмотки возбуждения в сеть

Чувствительность преобразователя можно увеличить за счет:

  1.  Увеличения ампер-витков обмотки возбуждения (до индукции в стали магнитопровода 1 – 1,5 Тл);
  2.  Увеличения удельного числа витков измерительной обмотки;
  3.  Увеличения площади зазора между подвижным сердечником и стержнем, для чего подвижный сердечник может охватить один из стержней магнитопровода;
  4.  Увеличения частоты ω;
  5.  Уменьшения зазора δ

Регулировка чувствительности производится за счет тока возбуждения и добавочного сопротивления. Чувствительность отдельных преобразователей достигает 100 В/см.

Источники основной погрешности:

  1.  Влияние магнитного сопротивления стали;
  2.  Непостоянство величины и площади зазора между стержнями вдоль их длины;
  3.  Неравномерность намотки измерительной обмотки, сказывающаяся наиболее сильно в начальной части характеристики;
  4.  Влияние собственной температуры на активную составляющую сопротивления обмотки, размеры зазора и магнитное сопротивление стали;
  5.  Влияние поперечных смещений сердечника.

Источники дополнительной погрешности:

  1.  Влияние внешней температуры (при изменении температуры на 10 градусов погрешность не превышает 0,033%);
  2.  Изменение частоты ω (при изменении частоты на 0,5 Гц погрешность составляет 0,001%), влияет незначительно;
  3.  Колебание напряжения питающей сети;
  4.  Влияние вибрации, приводящей к появлению дополнительной ЭДС с частотой вибрации;
  5.  Влияние внешних магнитных полей и ферромагнитных масс.

Дифференциальная схема трансформаторного преобразователя перемещения

Конструкции трансформаторных преобразователей перемещения с подвижным сердечником могут быть самыми разнообразными. Наиболее часто трансформаторные преобразователи выполняются по дифференциальной схеме. Рассмотрим принцип работы на примере трехстержневого ТП (Рис.3.), состоящего из подвижного ротора 1, статора 2 с первичной обмоткой W1 и двумя вторичными обмотками W2, соединенными встречно-последовательно.

Первичная обмотка создает магнитный поток Ф0 , составляющие которого Ф1 и Ф2 перераспределяются примерно пропорционально площадям перекрытия ротором крайних стержней. Потоки Ф1 и Ф2 наводят во вторичных обмотках ЭДС, которые в силу встречного соединения вычитаются, следовательно, в среднем положении ротора и симметричной конструкции выходной сигнал равен нулю. Данный вариант схемы является дифференциальным по напряжению.

Эта же схема может быть дифференциальной по току, если подать питание на вторичные обмотки, а сигнал снимать с первичной. В этом случае обмотка W1 будет сцеплена с потоками, направленными встречно в среднем стержне.

Проводимость воздушных зазоров определим без учета краевых потоков (т.е. потоков вне воздушного зазора), воспользовавшись геометрическими размерами ТП (Рис.4), тогда

, ,               (1)

где b – ширина воздушного зазора, одинаковая для всех зазоров.

Магнитный поток, созданный обмоткой возбуждения, замыкается помимо воздушных зазоров между средним и боковыми стержнями (потоки утечки). В первом приближении можно считать, что проводимость утечки G0 не зависят от положения ротора.

Рис.3.Схема трансформаторного дифференциального преобразователя

Если составить для приведенной схемы замещения уравнения для магнитных и электрических контуров, то, решая их, получим выражение для выходного напряжения:

          (2)

где  - относительное изменение входного сигнала в пределах ;

X0=W12G – реактивное сопротивление, обусловленное потокосцеплением взаимоиндукции, замыкающимся через магнитопровод ротора;

Xоб=W12Gоб – сопротивление, обусловленное потокосцеплением взаимоиндукции, замыкающимся вне магнитопровода ротора;

,  – приведенные к вторичной обмотке реактивные сопротивления Х0 и Х0

Рассмотренный тип ТП применяется для преобразования углового перемещения в электрический сигнал в пределах 7100 и обладает сравнительно линейной ФП в данном диапазоне.

Вследствие значительной краевой проводимости, меняющейся существенно нелинейно от положения ротора, этой конструкции присущ реактивный момент.

Для уменьшения реактивного момента и увеличения чувствительности чаще применяют круглый статор электромашинного типа, имеющий разное количество пазов. Конструктивная схема ТП, по существу включает несколько трехстержневых ТП. По отношению к трехстержневому ТП эта конструкция имеет значительные преимущества, т.к. обладает большой симметрией и меньшей чувствительностью к эксцентриситету ротора, удобством установки в приборы и значительно меньшими реактивными моментами вследствие существенного снижения краевых эффектов.

Для ТП, так же как и для ИП по тем же причинам, не удается получить нулевое значение выходного сигнала при среднем положении ротора. В лучших конструкциях ТП “нулевой” сигнал не превышает несколько десятков милливольт.

В трансформаторном преобразователе с подвижным сердечником необходимо обеспечить такой режим питания, чтобы МДС первичной обмотки, а, следовательно, и ток первичной цепи не изменялись при перемещении сердечника. Для этого в ординарных преобразователях необходимо включить в первичную цепь высокоомный добавочный резистор, а в дифференциальных преобразователях – последовательно соединить первичные обмотки, сопротивления которых изменяются с обратным знаком.

Увеличение частоты питающего напряжения позволяет уменьшить как габариты преобразователей, так и реактивный момент (усилия).

Эксплуатационные особенности. К достоинствам преобразователей с подвижным сердечником относятся: высокая надежность, вследствие отсутствия подвижных обмоток и контактов, высокая чувствительность, высокая точность, направленность действия и высокая перегрузочная способность. Недостатком преобразователей является ограничение повторяемости характеристик от образца к образцу, вследствие трудности одинакового выполнения распределенных обмоток в ряде преобразователей, высокая стоимость.

Для повышения точности, а также уменьшения реактивных моментов и механических взаимодействий между якорем и сердечником применяют круглый статор, имеющий кратное число полюсов (чаще кратное трём).

Данный преобразователь имеет симметричность, высокую чувствительность, не чувствителен к эксцентриситету, отсутствует реактивный момент.

2.3. Трансформаторный преобразователь с подвижной обмоткой

На рисунке 4 показан преобразователь простейшей конструкции. Его магнитопровод 1 собран из П-образных пластин трансформаторной стали или изготовлен из сплошного ферромагнитного материала. Обмотка возбуждения 2, размещенная в основании магнитопровода, выполненная в виде катушки. Измерительная обмотка 3 размещена на одном из стержней магнитопровода и может свободно перемещаться вдоль него.

При подключении обмотки возбуждения к источнику переменного тока создается магнитный поток, замыкающийся между стержнями магнитопровода. Максимальное значение магнитного потока будет в сечении с координатой Xmax и минимальное – в сечении с координатой X=0.

Рис. 4. Трансформаторный преобразователь перемещения с подвижной обмоткой

Так как подвижная катушка 3 охватывает один из стержней

магнитопровода, то при перемещении катушки вдоль стержня происходит изменение её потокосцепления, что приводит к изменению величины трансформированной в ней ЭДС

                         (3)

В случае пренебрежения магнитным сопротивлением стали Rμ включает в себя магнитное сопротивление участка воздушного зазора между стержнями, ограниченного координатой X, и определяется как

                                     (4)

Подставляя (2.3.2.) в (2.3.1.), получим

                            (5)

Вид этой характеристики показан на рисунке 6

Рис. 6. Статическая характеристика преобразователя с подвижной обмоткой

Для увеличения чувствительности

                            (6)

Необходимо:

  1.  увеличить ампер-витки обмотки возбуждения (в области до насыщения стали магнитопровода);
  2.  увеличить число витков измерительной обмотки;
  3.  увеличить ширину магнитопровода b;
  4.  уменьшить расстояние между стержнями h;

Источники основной погрешности:

  1.  влияние магнитного сопротивления стали, которое может достигать 3-5% от общего сопротивления;
  2.  непостоянство размеров h и b по длине магнитопровода;
  3.  влияние собственных температур;
  4.  влияние поперечного люфта.

Источники дополнительной погрешности:

  1.  влияние внешней температуры на размеры h и b, на Rb и Rμ ст;
  2.  колебание частоты;
  3.  колебание питающего напряжения;
  4.  влияние внешних магнитных полей и ферромагнитных масс.

Внешние магнитные поля могут внести погрешность в характеристику преобразователя при неблагоприятном расположении магнитопровода преобразователя по отношению к внешнему полю. Внешнее магнитное поле складывается (вычитается) с магнитным полем в стержнях и в воздушном зазоре.

Наиболее неблагоприятное расположение магнитопровода преобразователя к внешнему полю Фвн такое, когда силовые линии поля перпендикулярны стержням магнитопровода.

Обобщая изложенный материал о трансформаторных преобразователях, можно сделать следующий вывод.

Трансформаторные преобразователи используются для измерения перемещений – линейных и угловых, в качестве компенсирующих элементов в компенсаторах переменного тока, в качестве чувствительных элементов при контроле за положением подвижных элементов (преобразователи с подвижными сердечниками, обмотками и экранами); в качестве компенсирующих элементов в автокомпенсационных системах, а также в качестве счетно-решающих элементов: функциональных преобразователей, суммирующих, моделирующих и множительно-делительных устройств (все виды).

Основным преимуществом трансформаторных преобразователей является отсутствие гальванической связи между цепями питания и выхода, а также возможность получения выходного сигнала большей величины, чем питающее напряжение.

Трансформаторные преобразователи представляют собой амплитудные модуляторы, поэтому для уменьшения динамической погрешности частота питающего напряжения должна быть в 10 – 20 раз больше, чем максимально возможная частота изменения входной  величины.


 

А также другие работы, которые могут Вас заинтересовать

33519. Идейно-тематические и художественные особенности лирики Бродского 16.94 KB
  Однако через постижение этих отдельных пространств и их бытия Бродский выводил общие законы. Бродский являет собой историка межвременных коллизий и событий исследуя которые можно понять общее для всей человеческой истории. Это значит что Бродский приверженец в своей основе классицистической поэтики использует в стихотворениях только ту лексику которая максимально отвечает его замыслу. Бродский может изменять по своему желанию устойчивые словоформы отрекается от постоянства метра в одном стихотворении.
33520. Ведущие темы в лирике Есенина 22.6 KB
  Ведущие темы в лирике Есенина. Сложная и интересная судьба поэта множество путешествий смена мест и образа жизни в сочетании с творческим подходом к осмыслению действительности обусловили богатство и разнообразие тем и мотивов лирики Есенина. Время творчества Есенина время крутых поворотов в истории России. Есенина.
33521. Тема революции в поэме С. Есенина «Анна Снегина» 18.29 KB
  Есенина Анна Снегина. Поэма Анна Онегина написанная незадолго до смерти поэта в 1924 году явилась своеобразным обобщением размышлений Есенина об этом драматическом и противоречивом времени и вобрала в себя многие мотивы и образы его лирики. Это ощущение усиливается в поэме тем что на её страницах в качестве олицетворения его юности появляется Анна Снегина первая любовь девушка в белой накидке которая ласково сказала: Нет Несмотря на былые воспоминания автор прекрасно понимает что прошлое вернуть невозможно:...
33522. Творчество В.Набокова (роман по выбору). Проблематика, конфликты, герои 16.5 KB
  Защита Лужина Роман Защита Лужина привлекает и своим заглавием и своим содержанием писатель неоднократно объяснял его замысел: Русское заглавие этого романа Защита Лужина относится к шахматной защите будто бы придуманной моим героем сочинять книгу было нелегко надо был ввести роковое предназначение в жизнь Лужина и придать очертанию сада поездки событиям подобие замысловатой игры а в последних главах настоящей шахматной атаки разрушающей до основания здоровье моего героя. У Лужина неожиданно счастливая семейная жизнь...
33523. Особенности композиции и система образов в романе М. Булгакова «Мастер и Маргарита» 22.64 KB
  Особенности композиции и система образов в романе М. Булгакова Мастер и Маргарита Роман в романе М. Сожженное в печи произведение Мастера так называемый внутренний роман возрождается будто Феникс из пепла так как он связан с персонажами романа внешнего. С внешним романом его соединяет образ Алоизия Могарыча предателя которого Мастеру изображать неинтересно поэтому что уже был в его творчестве Иуда.
33524. Проблематика романа «Мастер и Маргарита» 16.97 KB
  Более всего тема угнетения преследования неординарной талантливой личности государством присутствует в судьбе Мастера. Маргарита громит квартиру критика Латунского погубившего Мастера но отвергает предложение уничтожить своего врага. После бала у Сатаны героиня в первую очередь просит за страдающую Фриду забывая о собственном страстном желании вернуть Мастера. Именно Воланд приводит Мастера и его подругу в их вечный дом даруя им покой.
33525. Тема репрессий в поэме А.Ахматовой «Реквием» 17.6 KB
  Ахматова начала писать свою поэму Реквием в 1935 году когда ее единственный сын Лев Гумилев был арестован. Как и другие матери жены сестры Ахматова много часов стояла в молчаливой очереди что вела к петербургской тюрьме Кресты. Только в 1940 году Ахматова завершила свое произведение опубликовано же оно было в 1987 году много лет спустя после смерит автора. Ахматова рассказывает об истории создания поэмы.
33526. Роман-антиутопия Е.Замятина «Мы» (жанровые и художественные особенности) 17.26 KB
  У Замятина мы не масса а социальное качество. Заветная идея сталинизма не человек но винтик в гигантском государственном механизме который подчинен твердой руке машиниста у Замятина показана осуществленной. Особенности жанра При чтении толкования термина антиутопия все его особенности прослеживаются в романе Евгения Замятина Мы: это и изображение тоталитарного государства и острый конфликт Чтобы возникла художественность нужен романный конфликт. Он должен пережить это сомнение как кульминацию своей жизни пусть даже...
33527. «Чевенгур» Платонова как роман-предупреждение 14.06 KB
  Чевенгур Платонова как романпредупреждение. прочитав роман “Чевенгур†писал Платонову: “Человек вы талантливый это бесспорно бесспорно и то что вы обладаете очень своеобразным языком. Платонов же посылая Горькому рукопись “Чевенгура†писал что “в романе содержится честная попытка изобразить начало коммунистического обществаâ€. Роман “Чевенгур†это энциклопедия социальных инициатив в их взаимодействии с реальной плотью жизни.