22348

Интегрирование функций комплексной переменной

Лекция

Математика и математический анализ

кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.

Русский

2013-08-04

1.52 MB

27 чел.

Лекция №5.

Интегрирование функций комплексной переменной.

Интеграл от функции комплексной переменной.

Пусть задана некоторая ориентированная кривая C (т.е. кривая с выбранным направлением движения вдоль нее) и на ней – функция комплексной переменной f(z).

По определению интегралом от  f(z) вдоль кривой C называют:

                                               

                                     (1)

 

         

                                            

где  - последовательные точки, разбивающие C на n участков; через a и b обозначены концы C, - произвольная точка лежащая на участке  кривой C, и предел берется в предположении, что .

Если C кусочно-гладкая (а значит, спрямляемая) кривая, а f(z) – кусочно-непрерывная и ограниченная функция, то интеграл (1) всегда существует.

В самом деле, положив

получим

                                    (3)

Суммы в правой части (3) являются интегральными суммами для соответствующих криволинейных интегралов. В наших условиях эти интегралы существуют, и, следовательно, существует

                                        (4)

С помощью формулы (4) вычисление интеграла от функции комплексной переменной сводится к вычислению действительных интегралов.

      Из введенных определений следует, что для комплексной функции действительной переменной справедливы соотношения

                                                                                            (5)

                                                                            (6)

Пусть  дает параметрическое представление кривой C, причем  тогда, пользуясь формулой (4), получим:

              (7)

Из формулы (4) вытекает также, что на интегралы от функций комплексной переменной  распространяются обычные свойства криволинейных интегралов:

                                       (8)      

                                                           (9)         

                                                                               (10)  

где a, b – комплексные постоянные, - кривая, состоящая из  и , - кривая, совпадающая с C, но проходящая в обратном направление.

Пусть на кривой C и l – длина C, тогда:

                                .                                (11)           

В самом деле,

где  - длина ломаной , вписанной в кривую C, и в пределе при  получаем (11).

 Теорема 1 (Коши). Если функция  f(z) аналитична в односвязной области D, то для всех кривых C, лежащих в этой области и имеющих общие концы, интеграл  имеет одно и то же значение.

Доказательство. Мы докажем эту теорему в дополнительном предполо-жении непрерывности производной 1 . В силу соотношения (4)

                                                  (4)

вопрос о независимости интеграла  от пути сводиться к вопросу о независимости от пути криволинейных интегралов:

                                                                            (12)     

Но, как известно, в односвязной области для независимости от пути криволи-нейного интеграла , где P и Q – функции, обладающие непрерывными частными производными, необходимо и достаточно2, чтобы выражение, стоящее под знаком этого интеграла, было полным дифференциалом, т.е. чтобы в каждой точке области D имело место соотношение . Для интегралов (4) эти соотношения имеют вид:

                                                                                         (13)

непрерывность же частных производных вытекает из предположения о непрерывности . Уравнения (13) совпадают с условиями Коши-Римана и удовлетворяются, т.к. f(z) – аналитическая функция. Ч.т.д.

 Теорема 2. Если функция  f(z) аналитична в односвязной области D, то интеграл

                                                       ,                                    (14)

рассматриваемый в зависимости от своего верхнего предела, также является аналитической в D функцией, причем

                                    .                                  (15)

 Доказательство. В самом деле, по  определению производной и свойствам интеграла (9) и (10) из предыдущего пункта имеем:

.

В силу непрерывности3 f(z) в точке z имеем:

где  при . Поэтому

                                                         (16)

Далее4,

Кроме того,

(путь интегрирования от z до z + h можно считать прямолинейным, поэтому его длина равна |h|). Таким образом, в (16) первый предел равен f(z), а второй – нулю, т.е. . Ч.т.д.

Функция, производная которой равна заданной функции f(z), называется первообразной этой функции.

Таким образом, интеграл от f(z), рассматриваемый как функция своего верхнего предела, является одной из первообразных функций f(z).

 Теорема 3. Любые две первообразные одной и той же функции отличаются друг от друга не более чем на постоянную.

 Доказательство. Пусть  - эти две первообразные. Положим

По формуле для производной имеем

ибо по условию .

Отсюда следует, что ,

т.е. U(x,y) и V(x,y) постоянные. Ч.т.д.

 Теорема 4 (формула Ньютона-Лейбница). Если F(z) – произвольная перво-образная аналитической функции f(z), то

                                                .                                  (17)

 Доказательство. В самом деле, по теореме 2 функция  является одной из первообразных для f(z), функция F(z) по условию также первообразная, следовательно, по теореме 3:

,

где C – некоторая постоянная. Полагая в этом равенстве , найдем, что . Ч.т.д.

Теореме Коши можно придать следующую форму.

 Теорема 1а. Если функция f(z) аналитична в односвязной области D, то ее интеграл вдоль любого замкнутого контура C, лежащего в D, равен нулю:

                                            .                                                     (18)

Доказательство. В самом деле, по свойствам интегралов:

        

                 .

Следовательно, равенство нулю интегралов вдоль C равносильно равенству между собой интегралов вдоль и .

Обобщение теоремы Коши.

 Теорема 5. Если функция f(z) аналитична в односвязной области D и непрерывна в замкнутой области , то интеграл от f(z), взятый вдоль границы C этой области, равен нулю:

                              .                                                                    (19)

      Доказательство.

      Пусть сначала C есть «звездный» контур, т.е. существует точка  такая, что любой луч с началом в этой точке пересекает C в одной и только одной точке. Без ограничения общности можно предполагать, что =0 (это достигается сдвигом плоскости z), тогда кривую C можно задать уравнением , где  - однозначная функция.

                                          

                                                                   

                                                                   

                                                                 

Через  обозначим контур, определяемый уравнением , . Т.к.  лежит внутри D, то по теореме Коши:

                                                                                             (20)

Но когда точка описывает , точка  () описывает C (см. рис.), поэтому равенство (20) можно переписать в виде

и следовательно,

.

Т.к. функция f(z) равномерно непрерывна в , то для любого  можно найти  такое, что для любой пары точек z, , удовлетворяющих неравенству , будет справедливо неравенство:

                                            .                                                  (22)

Пусть l – длина контура C и . Возьмем , тогда для любой пары точек z и  будем иметь

,

т.е. будет выполняться (22), тогда из (21) получим:

.

Т.к. здесь  произвольно мало, а интеграл не зависит от , то он равен 0. Таким образом, для звездных контуров теорема доказана.

      Пусть теперь C – произвольная кусочно-гладкая кривая.

                                                               

                                                                

                                                                     

                                                                     

Если C имеет точки возврата, то выбросим из D круги малого радиуса  с центром в этих точках так, чтобы граница полученной области  уже не имела таких точек. Проведя внутри  конечное число линий , эту область можно разбить на части , ограниченные звездными линиями . По доказанному выше

                                      .                                          (23)

Пусть все линии  проходят в одном и том же направлении. Сложим все уравнения (23). Все интегралы по  взаимно сокращаются (см. рис.). Остальные части границ  составляют границу  области  и, таким образом, . Но т. к. C и  отличаются лишь на конечное число малых дуг и т. к. функция f(z) ограничена, то ее интеграл вдоль этих дуг также мал (см. (11)). Таким образом, интеграл вдоль C сколь угодно мало отличается от интеграла вдоль, который равен 0, и, следовательно, сам равен нулю. Ч.т.д.

 Теорема 6 (теорема Коши для многосвязных областей). Если функция f(z) аналитична в области D и непрерывна в , то ее интеграл вдоль границы области, проходимой так, что область D все время остается с одной стороны, равен нулю.

Доказательство. Пусть функция f(z) аналитична в многосвязной области D, ограниченной кривыми  (см. рис.), и непрерывна в .

                                                    

                                                                         

                                                 

                                                                        

                                                              

                                                                                   

Проведем разрезы , превращающие D в односвязную область  и обозначим через  границу этой области – кривую, состоящую из участков кривых  и кривых , причем последние проходятся дважды в противоположных направлениях. Функция f(z) аналитична в  и непрерывна в . Следовательно, по теореме 5 и свойствам интегралов (9) и (10)

                                .                             (24)

При этом мы должны считать, что кривые  проходятся так, чтобы область D оставалась все время с одной стороны (например, слева). Ч.т.д.

1 Позже мы убедимся, что это предположение автоматически выполняется для гомоморфных функций.

2 Достаточность.


Если , то .


Необходимость. Пусть интеграл  не зависит от пути C, соединяющего точки  и . Тогда является однозначной функцией от , которая может обозначаться . Тогда в любой внутренней точке области D , где C – любая кусочно-гладкая кривая от  до , а  - любая кусочно-гладкая кривая в D от M до , например, отрезок прямой : . Следовательно,  Аналогично . (По теореме о среднем).

3 Непрерывность f(z) является следствием ее аналитичности.


                             

4                               

2


 

А также другие работы, которые могут Вас заинтересовать

29013. Поверхностное уплотнение грунтов укаткой, вибрацией и тяжёлыми трамбовками. Понятие об оптимальной влажности уплотняемого грунта 36 KB
  Понятие об оптимальной влажности уплотняемого грунта. Уплотняемость грунтов особенно пылеватоглинистых в значительной степени зависит от их влажности и определяется максимальной плотностью скелета уплотнённого грунта ρdmax и оптимальной влажностью w0. Эти параметры находятся по методике стандартного уплотнения грунта при различной влажности 40 ударами груза весом 215 Н сбрасываемого с высоты 30 см. По результатам испытания строится график зависимости плотности скелета уплотнённого грунта ρd от влажности грунта w рис.
29014. Глубинное уплотнение грунтов с помощью песчаных и грунтовых свай. Область применения указанных методов 51.5 KB
  Песчаные сваи применяют для уплотнения сильно сжимаемых пылеватоглинистых грунтов рыхлых песков и заторфованных грунтов на глубину до 18. Песчаные сваи изготовляют следующим образом. Вокруг песчаной сваи грунт также находится в уплотнённом состоянии рис. Уплотнение грунта песчаными сваями обычно производится под всем сооружением Сваи располагаются в шахматном порядке как это показано на рис.
29015. Уплотнение грунтов основания водопонижением. Ускорение процесса уплотнения с помощью электроосмоса 33.5 KB
  Площадь основания где намечено уплотнение грунтов окружается иглофильтрами или колодцами из которых производится откачка воды водопонизительными установками рис. Понижение уровня подземных вод приводит к тому что в пределах зоны водопонижения снимается взвешивающее действие воды на скелет грунта. При пропускании через грунт постоянного электрического тока происходит передвижение воды к иглофильтрукатоду и эффективный коэффициент фильтрации увеличивается в 10.
29016. Закрепление грунтов инъекциями цементных или силикатных растворов, битума, синтетических смол. Область применения указанных методов 34 KB
  Закрепление грунтов инъекциями цементных или силикатных растворов битума синтетических смол. Закрепление грунтов заключается в искусственном преобразовании строительных свойств грунтов в условиях их естественного залегания разнообразными физикохимическими методами. Это обеспечивает увеличение прочности грунтов снижение их сжимаемости уменьшение водопроницаемости и чувствительности к изменению внешней среды особенно влажности. Цементация грунтов.
29017. Термическое закрепление грунтов. Область применения и методы контроля качества работ 33.5 KB
  В результате этого образуются прочные водостойкие структурные связи между частицами и агрегатами грунта. Отметим что температура газов которыми производится обработка грунта не должна превышать 750.12 суток в результате чего получается упрочнённый конусообразный массив грунта диаметром поверху 15. Образуется как бы коническая свая из обожжённого непросадочного грунта с прочностью до 10 МПа.
29018. Что называется грунтом, его составные элементы 25 KB
  Структурные связи между частицами грунта. Грунтами называют любые горные породы коры выветривания земли сыпучие или связные прочность связей у которых между частицами во много раз меньше чем прочность самих минеральных частиц или эти связи между частицами отсутствуют вовсе. Вода и газы находятся в порах между твердыми частицами минеральными и органическими. Газообразные включения пары газы всегда в том или ином количестве содержатся в грунтах и могут находиться в следующих состояниях: замкнутом или защемленном располагаясь в...
29019. Назовите виды давления грунта на подпорную стенку в зависимости от ее поступательного движения. Какой вид имеет диаграмма давления грунта на стенку в зависимости от ее перемещения 31.5 KB
  Какой вид имеет диаграмма давления грунта на стенку в зависимости от ее перемещения В зависимости от поступательного движения подпорной стенки на нее могут действовать следующие виды давления грунта: активное давление; пассивное давление; давление покоя. Активным называется минимальное из всех возможных для данной стенки давление на нее грунта проявляющееся в том случае если стенка имеет возможность переместиться в сторону от засыпки рис. Активное давление иногда называют распором. Пассивным называется максимальное из всех возможных...
29020. Напряжения, возникающие в массиве грунта от действия сооружения, накладываются на поле начальных напряжений, к которым относятся напряжения от собственного веса грунта 28 KB
  Напряжения возникающие в массиве грунта от действия сооружения накладываются на поле начальных напряжений к которым относятся напряжения от собственного веса грунта. Как вычислить вертикальные напряжения в массиве грунта от его собственного веса в следующих случаях: однородное основание; многослойное основание; при наличии в толще грунта уровня подземных вод; при наличии ниже уровня подземных вод водоупорного слоя. Вертикальное напряжение от собственного веса грунта σz представляют собой вес столба грунта над рассматриваемой точкой...
29021. От чего зависит глубина заложения фундамента 31.5 KB
  Глубина заложения фундаментов является одним из основных факторов обеспечивающих необходимую несущую способность и деформации основания не превышающие предельных по условиям нормальной эксплуатации здания или сооружения. От чего зависит глубина заложения фундамента Допускается ли закладывать подошвы соседних фундаментов на разных отметках Глубина заложения фундамента определяется: инженерногеологическими условиями площадки строительства физикомеханические свойства грунтов характер напластования и пр.; гидрогеологическими условиями...