22348

Интегрирование функций комплексной переменной

Лекция

Математика и математический анализ

кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.

Русский

2013-08-04

1.52 MB

27 чел.

Лекция №5.

Интегрирование функций комплексной переменной.

Интеграл от функции комплексной переменной.

Пусть задана некоторая ориентированная кривая C (т.е. кривая с выбранным направлением движения вдоль нее) и на ней – функция комплексной переменной f(z).

По определению интегралом от  f(z) вдоль кривой C называют:

                                               

                                     (1)

 

         

                                            

где  - последовательные точки, разбивающие C на n участков; через a и b обозначены концы C, - произвольная точка лежащая на участке  кривой C, и предел берется в предположении, что .

Если C кусочно-гладкая (а значит, спрямляемая) кривая, а f(z) – кусочно-непрерывная и ограниченная функция, то интеграл (1) всегда существует.

В самом деле, положив

получим

                                    (3)

Суммы в правой части (3) являются интегральными суммами для соответствующих криволинейных интегралов. В наших условиях эти интегралы существуют, и, следовательно, существует

                                        (4)

С помощью формулы (4) вычисление интеграла от функции комплексной переменной сводится к вычислению действительных интегралов.

      Из введенных определений следует, что для комплексной функции действительной переменной справедливы соотношения

                                                                                            (5)

                                                                            (6)

Пусть  дает параметрическое представление кривой C, причем  тогда, пользуясь формулой (4), получим:

              (7)

Из формулы (4) вытекает также, что на интегралы от функций комплексной переменной  распространяются обычные свойства криволинейных интегралов:

                                       (8)      

                                                           (9)         

                                                                               (10)  

где a, b – комплексные постоянные, - кривая, состоящая из  и , - кривая, совпадающая с C, но проходящая в обратном направление.

Пусть на кривой C и l – длина C, тогда:

                                .                                (11)           

В самом деле,

где  - длина ломаной , вписанной в кривую C, и в пределе при  получаем (11).

 Теорема 1 (Коши). Если функция  f(z) аналитична в односвязной области D, то для всех кривых C, лежащих в этой области и имеющих общие концы, интеграл  имеет одно и то же значение.

Доказательство. Мы докажем эту теорему в дополнительном предполо-жении непрерывности производной 1 . В силу соотношения (4)

                                                  (4)

вопрос о независимости интеграла  от пути сводиться к вопросу о независимости от пути криволинейных интегралов:

                                                                            (12)     

Но, как известно, в односвязной области для независимости от пути криволи-нейного интеграла , где P и Q – функции, обладающие непрерывными частными производными, необходимо и достаточно2, чтобы выражение, стоящее под знаком этого интеграла, было полным дифференциалом, т.е. чтобы в каждой точке области D имело место соотношение . Для интегралов (4) эти соотношения имеют вид:

                                                                                         (13)

непрерывность же частных производных вытекает из предположения о непрерывности . Уравнения (13) совпадают с условиями Коши-Римана и удовлетворяются, т.к. f(z) – аналитическая функция. Ч.т.д.

 Теорема 2. Если функция  f(z) аналитична в односвязной области D, то интеграл

                                                       ,                                    (14)

рассматриваемый в зависимости от своего верхнего предела, также является аналитической в D функцией, причем

                                    .                                  (15)

 Доказательство. В самом деле, по  определению производной и свойствам интеграла (9) и (10) из предыдущего пункта имеем:

.

В силу непрерывности3 f(z) в точке z имеем:

где  при . Поэтому

                                                         (16)

Далее4,

Кроме того,

(путь интегрирования от z до z + h можно считать прямолинейным, поэтому его длина равна |h|). Таким образом, в (16) первый предел равен f(z), а второй – нулю, т.е. . Ч.т.д.

Функция, производная которой равна заданной функции f(z), называется первообразной этой функции.

Таким образом, интеграл от f(z), рассматриваемый как функция своего верхнего предела, является одной из первообразных функций f(z).

 Теорема 3. Любые две первообразные одной и той же функции отличаются друг от друга не более чем на постоянную.

 Доказательство. Пусть  - эти две первообразные. Положим

По формуле для производной имеем

ибо по условию .

Отсюда следует, что ,

т.е. U(x,y) и V(x,y) постоянные. Ч.т.д.

 Теорема 4 (формула Ньютона-Лейбница). Если F(z) – произвольная перво-образная аналитической функции f(z), то

                                                .                                  (17)

 Доказательство. В самом деле, по теореме 2 функция  является одной из первообразных для f(z), функция F(z) по условию также первообразная, следовательно, по теореме 3:

,

где C – некоторая постоянная. Полагая в этом равенстве , найдем, что . Ч.т.д.

Теореме Коши можно придать следующую форму.

 Теорема 1а. Если функция f(z) аналитична в односвязной области D, то ее интеграл вдоль любого замкнутого контура C, лежащего в D, равен нулю:

                                            .                                                     (18)

Доказательство. В самом деле, по свойствам интегралов:

        

                 .

Следовательно, равенство нулю интегралов вдоль C равносильно равенству между собой интегралов вдоль и .

Обобщение теоремы Коши.

 Теорема 5. Если функция f(z) аналитична в односвязной области D и непрерывна в замкнутой области , то интеграл от f(z), взятый вдоль границы C этой области, равен нулю:

                              .                                                                    (19)

      Доказательство.

      Пусть сначала C есть «звездный» контур, т.е. существует точка  такая, что любой луч с началом в этой точке пересекает C в одной и только одной точке. Без ограничения общности можно предполагать, что =0 (это достигается сдвигом плоскости z), тогда кривую C можно задать уравнением , где  - однозначная функция.

                                          

                                                                   

                                                                   

                                                                 

Через  обозначим контур, определяемый уравнением , . Т.к.  лежит внутри D, то по теореме Коши:

                                                                                             (20)

Но когда точка описывает , точка  () описывает C (см. рис.), поэтому равенство (20) можно переписать в виде

и следовательно,

.

Т.к. функция f(z) равномерно непрерывна в , то для любого  можно найти  такое, что для любой пары точек z, , удовлетворяющих неравенству , будет справедливо неравенство:

                                            .                                                  (22)

Пусть l – длина контура C и . Возьмем , тогда для любой пары точек z и  будем иметь

,

т.е. будет выполняться (22), тогда из (21) получим:

.

Т.к. здесь  произвольно мало, а интеграл не зависит от , то он равен 0. Таким образом, для звездных контуров теорема доказана.

      Пусть теперь C – произвольная кусочно-гладкая кривая.

                                                               

                                                                

                                                                     

                                                                     

Если C имеет точки возврата, то выбросим из D круги малого радиуса  с центром в этих точках так, чтобы граница полученной области  уже не имела таких точек. Проведя внутри  конечное число линий , эту область можно разбить на части , ограниченные звездными линиями . По доказанному выше

                                      .                                          (23)

Пусть все линии  проходят в одном и том же направлении. Сложим все уравнения (23). Все интегралы по  взаимно сокращаются (см. рис.). Остальные части границ  составляют границу  области  и, таким образом, . Но т. к. C и  отличаются лишь на конечное число малых дуг и т. к. функция f(z) ограничена, то ее интеграл вдоль этих дуг также мал (см. (11)). Таким образом, интеграл вдоль C сколь угодно мало отличается от интеграла вдоль, который равен 0, и, следовательно, сам равен нулю. Ч.т.д.

 Теорема 6 (теорема Коши для многосвязных областей). Если функция f(z) аналитична в области D и непрерывна в , то ее интеграл вдоль границы области, проходимой так, что область D все время остается с одной стороны, равен нулю.

Доказательство. Пусть функция f(z) аналитична в многосвязной области D, ограниченной кривыми  (см. рис.), и непрерывна в .

                                                    

                                                                         

                                                 

                                                                        

                                                              

                                                                                   

Проведем разрезы , превращающие D в односвязную область  и обозначим через  границу этой области – кривую, состоящую из участков кривых  и кривых , причем последние проходятся дважды в противоположных направлениях. Функция f(z) аналитична в  и непрерывна в . Следовательно, по теореме 5 и свойствам интегралов (9) и (10)

                                .                             (24)

При этом мы должны считать, что кривые  проходятся так, чтобы область D оставалась все время с одной стороны (например, слева). Ч.т.д.

1 Позже мы убедимся, что это предположение автоматически выполняется для гомоморфных функций.

2 Достаточность.


Если , то .


Необходимость. Пусть интеграл  не зависит от пути C, соединяющего точки  и . Тогда является однозначной функцией от , которая может обозначаться . Тогда в любой внутренней точке области D , где C – любая кусочно-гладкая кривая от  до , а  - любая кусочно-гладкая кривая в D от M до , например, отрезок прямой : . Следовательно,  Аналогично . (По теореме о среднем).

3 Непрерывность f(z) является следствием ее аналитичности.


                             

4                               

2


 

А также другие работы, которые могут Вас заинтересовать

4065. Экономическое обоснование технического решения в курсовом проекте по разработке технологической линии производства опилкобрикета 106 KB
  Введение Спад производства в лесной деревообрабатывающей промышленности России за последние 10 лет в среднем составляет 40. Инфраструктура лесопромышленного комплекса разрушен на 50-70. Из-за недостатка древесного сырья простаиваются предприятия ...
4066. АФС агентство недвижимости ООО Любимый город 267.5 KB
  Характеристика предприятия Общество с ограниченной ответственностью Любимый город создано в соответствии с Гражданским кодексом Российской Федерации. Компания зарегистрирована 19 декабря 2007 года регистратором Единым государственным реестром ю...
4067. Глобальные сети для доступа удаленных ЭВМ и терминалов к мощным ЭВМ и host-компьютерам 311 KB
  Введение Глобальные сети (Wide Area Networks, WAN), которые также называют территориальными компьютерными сетями, служат для того, чтобы предоставлять свои сервисы большому количеству конечных абонентов, разбросанных по большой территории - в предел...
4068. Характеристика сетей и технологий ISDN 187.5 KB
  Введение Integrated Services Digital Network (ISDN) (Цифровая Сеть с Интегрированными Услугами) - это всеми доступная интерактивная телефонная сеть, использующая новейшую цифровую технологию передачи сигнала, а так же включающая в себя обширный набо...
4069. Оценка стоимости машин, оборудования и транспортных средств методом чистых активов 242 KB
  Введение Стабилизация и дальнейшее развитие российской экономики непосредственно зависит от развития производственного аппарата промышленности, формируемого в первую очередь отраслями машиностроения. Машины и оборудование, транспортные средства сост...
4070. Психолого-акмеологическое обеспечение эффективности организационного лидерства 238.5 KB
  В рамках курса слушатели академии пополняют знания относительно важного в государственном управлении социально-психологического явления - лидерства, овладевают современными акмеологическими и психолого-педагогическими технологиями, ориентир...
4071. Предпринимательство: сущность и роль в экономическом развитии. Формы и сферы 97.5 KB
  Введение У истоков теории предпринимательства стоял шотландский экономист французского происхождения Р. Кантильен, который и ввел понятие «предприниматель» в экономическую теорию. По Кантильену, предприниматель- это человек с неопределен...
4072. Проблемы и перспективы европейской экономической интеграции 150.5 KB
  Международная экономическая интеграция — характерная особенность современного этапа развития мировой экономики. В конце XX в. она стала мощным инструментом ускоренного развития региональных экономик и повышения конкурентоспособности на...
4073. Экономические взгляды Джона Мейнарда Кейнса 71.5 KB
  Вступление В истории экономической науки имя Джона Мейнарда Кейнса (1883 - 1946) стоит в ряду ученых, оказавших наибольшее влияние на развитие современного им общества. Кейнс стал знаменит и почитаем еще при жизни, а споры по поводу его взглядов не ...