22348

Интегрирование функций комплексной переменной

Лекция

Математика и математический анализ

кривая с выбранным направлением движения вдоль нее и на ней – функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz – кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz – аналитическая функция.

Русский

2013-08-04

1.52 MB

25 чел.

Лекция №5.

Интегрирование функций комплексной переменной.

Интеграл от функции комплексной переменной.

Пусть задана некоторая ориентированная кривая C (т.е. кривая с выбранным направлением движения вдоль нее) и на ней – функция комплексной переменной f(z).

По определению интегралом от  f(z) вдоль кривой C называют:

                                               

                                     (1)

 

         

                                            

где  - последовательные точки, разбивающие C на n участков; через a и b обозначены концы C, - произвольная точка лежащая на участке  кривой C, и предел берется в предположении, что .

Если C кусочно-гладкая (а значит, спрямляемая) кривая, а f(z) – кусочно-непрерывная и ограниченная функция, то интеграл (1) всегда существует.

В самом деле, положив

получим

                                    (3)

Суммы в правой части (3) являются интегральными суммами для соответствующих криволинейных интегралов. В наших условиях эти интегралы существуют, и, следовательно, существует

                                        (4)

С помощью формулы (4) вычисление интеграла от функции комплексной переменной сводится к вычислению действительных интегралов.

      Из введенных определений следует, что для комплексной функции действительной переменной справедливы соотношения

                                                                                            (5)

                                                                            (6)

Пусть  дает параметрическое представление кривой C, причем  тогда, пользуясь формулой (4), получим:

              (7)

Из формулы (4) вытекает также, что на интегралы от функций комплексной переменной  распространяются обычные свойства криволинейных интегралов:

                                       (8)      

                                                           (9)         

                                                                               (10)  

где a, b – комплексные постоянные, - кривая, состоящая из  и , - кривая, совпадающая с C, но проходящая в обратном направление.

Пусть на кривой C и l – длина C, тогда:

                                .                                (11)           

В самом деле,

где  - длина ломаной , вписанной в кривую C, и в пределе при  получаем (11).

 Теорема 1 (Коши). Если функция  f(z) аналитична в односвязной области D, то для всех кривых C, лежащих в этой области и имеющих общие концы, интеграл  имеет одно и то же значение.

Доказательство. Мы докажем эту теорему в дополнительном предполо-жении непрерывности производной 1 . В силу соотношения (4)

                                                  (4)

вопрос о независимости интеграла  от пути сводиться к вопросу о независимости от пути криволинейных интегралов:

                                                                            (12)     

Но, как известно, в односвязной области для независимости от пути криволи-нейного интеграла , где P и Q – функции, обладающие непрерывными частными производными, необходимо и достаточно2, чтобы выражение, стоящее под знаком этого интеграла, было полным дифференциалом, т.е. чтобы в каждой точке области D имело место соотношение . Для интегралов (4) эти соотношения имеют вид:

                                                                                         (13)

непрерывность же частных производных вытекает из предположения о непрерывности . Уравнения (13) совпадают с условиями Коши-Римана и удовлетворяются, т.к. f(z) – аналитическая функция. Ч.т.д.

 Теорема 2. Если функция  f(z) аналитична в односвязной области D, то интеграл

                                                       ,                                    (14)

рассматриваемый в зависимости от своего верхнего предела, также является аналитической в D функцией, причем

                                    .                                  (15)

 Доказательство. В самом деле, по  определению производной и свойствам интеграла (9) и (10) из предыдущего пункта имеем:

.

В силу непрерывности3 f(z) в точке z имеем:

где  при . Поэтому

                                                         (16)

Далее4,

Кроме того,

(путь интегрирования от z до z + h можно считать прямолинейным, поэтому его длина равна |h|). Таким образом, в (16) первый предел равен f(z), а второй – нулю, т.е. . Ч.т.д.

Функция, производная которой равна заданной функции f(z), называется первообразной этой функции.

Таким образом, интеграл от f(z), рассматриваемый как функция своего верхнего предела, является одной из первообразных функций f(z).

 Теорема 3. Любые две первообразные одной и той же функции отличаются друг от друга не более чем на постоянную.

 Доказательство. Пусть  - эти две первообразные. Положим

По формуле для производной имеем

ибо по условию .

Отсюда следует, что ,

т.е. U(x,y) и V(x,y) постоянные. Ч.т.д.

 Теорема 4 (формула Ньютона-Лейбница). Если F(z) – произвольная перво-образная аналитической функции f(z), то

                                                .                                  (17)

 Доказательство. В самом деле, по теореме 2 функция  является одной из первообразных для f(z), функция F(z) по условию также первообразная, следовательно, по теореме 3:

,

где C – некоторая постоянная. Полагая в этом равенстве , найдем, что . Ч.т.д.

Теореме Коши можно придать следующую форму.

 Теорема 1а. Если функция f(z) аналитична в односвязной области D, то ее интеграл вдоль любого замкнутого контура C, лежащего в D, равен нулю:

                                            .                                                     (18)

Доказательство. В самом деле, по свойствам интегралов:

        

                 .

Следовательно, равенство нулю интегралов вдоль C равносильно равенству между собой интегралов вдоль и .

Обобщение теоремы Коши.

 Теорема 5. Если функция f(z) аналитична в односвязной области D и непрерывна в замкнутой области , то интеграл от f(z), взятый вдоль границы C этой области, равен нулю:

                              .                                                                    (19)

      Доказательство.

      Пусть сначала C есть «звездный» контур, т.е. существует точка  такая, что любой луч с началом в этой точке пересекает C в одной и только одной точке. Без ограничения общности можно предполагать, что =0 (это достигается сдвигом плоскости z), тогда кривую C можно задать уравнением , где  - однозначная функция.

                                          

                                                                   

                                                                   

                                                                 

Через  обозначим контур, определяемый уравнением , . Т.к.  лежит внутри D, то по теореме Коши:

                                                                                             (20)

Но когда точка описывает , точка  () описывает C (см. рис.), поэтому равенство (20) можно переписать в виде

и следовательно,

.

Т.к. функция f(z) равномерно непрерывна в , то для любого  можно найти  такое, что для любой пары точек z, , удовлетворяющих неравенству , будет справедливо неравенство:

                                            .                                                  (22)

Пусть l – длина контура C и . Возьмем , тогда для любой пары точек z и  будем иметь

,

т.е. будет выполняться (22), тогда из (21) получим:

.

Т.к. здесь  произвольно мало, а интеграл не зависит от , то он равен 0. Таким образом, для звездных контуров теорема доказана.

      Пусть теперь C – произвольная кусочно-гладкая кривая.

                                                               

                                                                

                                                                     

                                                                     

Если C имеет точки возврата, то выбросим из D круги малого радиуса  с центром в этих точках так, чтобы граница полученной области  уже не имела таких точек. Проведя внутри  конечное число линий , эту область можно разбить на части , ограниченные звездными линиями . По доказанному выше

                                      .                                          (23)

Пусть все линии  проходят в одном и том же направлении. Сложим все уравнения (23). Все интегралы по  взаимно сокращаются (см. рис.). Остальные части границ  составляют границу  области  и, таким образом, . Но т. к. C и  отличаются лишь на конечное число малых дуг и т. к. функция f(z) ограничена, то ее интеграл вдоль этих дуг также мал (см. (11)). Таким образом, интеграл вдоль C сколь угодно мало отличается от интеграла вдоль, который равен 0, и, следовательно, сам равен нулю. Ч.т.д.

 Теорема 6 (теорема Коши для многосвязных областей). Если функция f(z) аналитична в области D и непрерывна в , то ее интеграл вдоль границы области, проходимой так, что область D все время остается с одной стороны, равен нулю.

Доказательство. Пусть функция f(z) аналитична в многосвязной области D, ограниченной кривыми  (см. рис.), и непрерывна в .

                                                    

                                                                         

                                                 

                                                                        

                                                              

                                                                                   

Проведем разрезы , превращающие D в односвязную область  и обозначим через  границу этой области – кривую, состоящую из участков кривых  и кривых , причем последние проходятся дважды в противоположных направлениях. Функция f(z) аналитична в  и непрерывна в . Следовательно, по теореме 5 и свойствам интегралов (9) и (10)

                                .                             (24)

При этом мы должны считать, что кривые  проходятся так, чтобы область D оставалась все время с одной стороны (например, слева). Ч.т.д.

1 Позже мы убедимся, что это предположение автоматически выполняется для гомоморфных функций.

2 Достаточность.


Если , то .


Необходимость. Пусть интеграл  не зависит от пути C, соединяющего точки  и . Тогда является однозначной функцией от , которая может обозначаться . Тогда в любой внутренней точке области D , где C – любая кусочно-гладкая кривая от  до , а  - любая кусочно-гладкая кривая в D от M до , например, отрезок прямой : . Следовательно,  Аналогично . (По теореме о среднем).

3 Непрерывность f(z) является следствием ее аналитичности.


                             

4                               

2


 

А также другие работы, которые могут Вас заинтересовать

47704. МЕТОДИЧНІ ВКАЗІВКИ. ОХОРОНА ПРАЦІ 166.5 KB
  Методичні вказівки по виконанню розділу Охорона праці дипломної роботи бакалавра для студентів інженерних і інженернопедагогічних спеціальностей Уклад. Методичні вказівки роз'ясняють зміст і структуру розділу Охорона праці у дипломній роботі бакалавра. У них приводяться загальні організаційні моменти по роботі над розділом правила оформлення чернетки й роботи над зауваженнями консультанта кафедри Охорони праці й навколишнього середовища.
47705. Методические указания. Маркетинг в сфере услуг 360 KB
  Экономика предприятия всех форм обучения Севастополь 2013 УДК 33 Методические указания для выполнения контрольной работы по дисциплине Маркетинг в сфере услуг для студентов специальности Целью методических указаний является оказание помощи студентам при выполнении контрольной работы по дисциплине Маркетинг и сферы услуг. Вопросы к итоговому контролю зачету по учебной дисциплине Маркетинг в сфере услуг.
47706. Методические указания. Экономика туризма 452 KB
  030504 Экономика предприятия всех форм обучения Севастополь 2013 УДК 33 Методические указания для выполнения контрольной работы по дисциплине Экономика туризма для студентов направления 6. Целью методических указаний является оказание помощи студентам при выполнении контрольной работы по дисциплине Экономика туризма. Цель выполнения контрольной работы состоит в закреплении и углублении теоретические знаний полученных студентами в процессе изучения курса Экономика туризма и выработке умения применять их в практическом решении вопросов...
47707. ИССЛЕДОВАНИЕ ОСВЕЩЕННОСТИ РАБОЧИХ МЕСТ 498.5 KB
  С освещенностью связаны следующие вредные и опасные факторы: ее чрезмерная или недостаточная величина пульсация светового потока несоответствие спектрального состава света условиям работы и искажение цветопередачи объектов неравномерность освещения рабочего места чрезмерная или недостаточная контрастность рассматриваемого объекта с фоном ослепление прямым попаданием в глаза возможность появления стробоскопического эффекта. ЦЕЛЬ РАБОТЫ Изучить методы измерения и принципы нормирования естественного и искусственного освещения промышленных...
47708. ОЦЕНКА ЗАПЫЛЕННОСТИ И ЗАГАЗОВАННОСТИ ВОЗДУХА РАБОЧЕЙ ЗОНЫ 751.5 KB
  ОЦЕНКА ЗАПЫЛЕННОСТИ И ЗАГАЗОВАННОСТИ ВОЗДУХА РАБОЧЕЙ ЗОНЫ Методические указания к лабораторной работе № 2 Кострома КГТУ 2011 УДК 658. Оценка запыленности и загазованности воздуха рабочей зоны : методические указания к лабораторной работе №2 Т. Загрязнение воздуха химическими веществами оказывает вредное воздействие на здоровье работоспособность и производительность работающего В лабораторной работе используются приборы и устройства питающиеся от сети напряжением 220 В: стенд с пылевой камерой для создания пылевой...
47710. Антикоррупционная экспертиза нормативных правовых актов 55.52 KB
  Целью настоящей работы является изучения теоретических основ антикоррупционной экспертизы нормативно - правовых актов, анализ ее особенностей, рассмотрение сущности и принципов проведения данной экспертизы, а также обозначение практических проблем, связанных с ее реализацией в Российской Федерации
47711. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ И РАЗВЕРТКИ 621.5 KB
  Методические указания содержат теоретический материал по теме Поверхности и развертки задачи для решения на практических занятиях и для самостоятельного решения. ПОВЕРХНОСТИ 1. Каркас поверхности Технические объекты любой формы можно разделить на различные геометрические тела границами которых являются поверхности.
47712. МЕТОДИЧЕСКОЕ ПОСОБИЕ. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СИСТЕМ 130.5 KB
  Кроме того при выборе тематики учитываются особенности машинной реализации систем при допустимых затратах машинных ресурсов на реализацию моделей машинного времени и оперативной памяти для их выполнения при возможности организации интерактивного режима что особенно важно для активного усвоения теоретического материала дисциплины и интенсивного приобретения практических навыков моделирования на современных ЭВМ. Система обработки информации содержит мультиплексный канал и три ЭВМ. Затем они поступают на обработку в ту ЭВМ где имеется...