22352

Представление аналитических функций рядами

Лекция

Математика и математический анализ

Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.

Русский

2013-08-04

464 KB

13 чел.

Представление аналитических функций рядами.

Ряды Тейлора.

Воспользуемся формулой для суммы членов геометрической прогрессии

,

перепишем её в виде:

                                     (1)

(формула справедлива и для комплексных ).

Зафиксируем некоторую точку  из области  аналитичности функции  и, воспользовавшись формулой (1), напишем

Умножим обе части этого равенства на  и проинтегрируем его по  вдоль некоторого замкнутого контура C, лежащего в  и охватывающего точки  и . Пользуясь формулой Коши и формулами для высших производных (), получим так называемую формулу Тейлора

,                     (2)

где остаточный член имеет вид

.                                     (3)

Ответ на вопрос о том, при каких условиях  при , т.е. при каких условиях функция  представима своим рядом Тейлора с центром в точке :

,                                             (4)

даёт

Теорема 1 (Коши). Функция  представима своим рядом Тейлора (4) в любом открытом круге с центром в точке , в котором она аналитична. Во всякой замкнутой области, принадлежащей этому кругу, ряд Тейлора сходится равномерно.

Доказательство. Обозначим через  радиус круга аналитичности функции  (с центром в точке ) и рассмотрим произвольное число ,  и круг , где  - произвольное положительное число. Пусть  - любая точка последнего круга и  - окружность . Имеем: , , следовательно,

,

поэтому формула (3) даёт:

;

где  - максимум модуля  в круге  (функция  аналитична в этом круге и, следовательно, ограничена). Т.к. , то отсюда видно, что  при , причём оценка  не зависит от ; таким образом, в любом круге , где , ряд Тейлора сходится равномерно.

Произвольную замкнутую область, лежащую в круге аналитичности функции , можно погрузить в некоторый круг , где , , следовательно, и в такой области ряд сходится равномерно. Ч.т.д.

Таким образом, всякая аналитическая в круге функция представляется в нём сходящимся степенным рядом.

Степенные ряды.

 

            Теорема 2 (Вейерштрасса). Если ряд

,                                                         (5)

составленный из функций, аналитических в односвязной области , равномерно сходится в этой области, то его сумма также является функцией, аналитической в .

Доказательство. В самом деле, согласно предыдущей лекции, сумма  ряда (5) непрерывна в . Пусть  - произвольный замкнутый контур, лежащий в ; в силу равномерной сходимости ряда (5) его можно почленно проинтегрировать вдоль  и мы получим, что

,

т.к. по теореме Коши интеграл от аналитической функции  по замкнутому контуру в односвязной области равен нулю. Теперь по теореме Мореры можно утверждать, что функция  аналитична в области . Ч.т.д.

Теорема 3 (Вейерштрасса).  Произвольный ряд (5), составленный из функций, аналитических в области  и непрерывных в , равномерно сходящийся в , можно почленно дифференцировать в  любое число раз.

Доказательство. Пусть  - произвольная точка границы  области , а  - произвольная внутренняя точка этой области. Т.к. разность  при фиксированном  ограничена снизу по модулю положительным числом, то ряд , где  - произвольное натуральное число, сходится равномерно относительно  на . Следовательно, его можно почленно интегрировать вдоль , и значит, сходится ряд

                                       (6)

(для каждого члена ряда мы воспользуемся формулой Коши для производных). Остаётся доказать, что сумма ряда (6) является -ой производной суммы  ряда (5). Но в силу равномерной сходимости левую часть формулы (6) можно записать в виде

.

Ч.т.д.

Замечание 1. Если ряд (5) из аналитических функций равномерно сходится на границе  области , то он равномерно сходится в . (Это непосредственно следует из принципа максимума модуля, согласно которому

).

Замечание 2. В теореме 3 можно утверждать сходимость ряда из производных лишь в , но не в . Например, ряд  равномерно сходится в замкнутом круге , т.к. он мажорируется там сходящимся числовым рядом . Однако, ряд производных  (сходящийся по теореме 3 при ) расходится в точке  границы круга.

Теорема 4 (Абеля). Если степенной ряд  сходится в точке , то он сходится и в любой точке , расположенной ближе к центру , чем , причём в любом круге , где  сходимость ряда равномерна.

Доказательство. Пусть  - произвольная точка этого круга. Представим -й член ряда в виде

.

В силу сходимости ряда в точке  его общий член стремится к нулю и, следовательно, ограничен в этой точке, т.е.  для всех . Кроме того, по условию . Таким образом, для всех

, .                                        (7)

Отсюда вытекает равномерная сходимость ряда в круге . Т.к. число  может быть взято сколь угодно близким к 1, то тем самым доказана сходимость ряда в любой точке круга  и доказательство теоремы Абеля закончено.

Из теоремы Абеля вытекает, что областью сходимости степенного ряда  является открытый круг с центром в точке  (который может вырождаться в точку или заполнять всю плоскость) и ещё, быть может, некоторые точки на границе круга. Радиус этого круга называется радиусом сходимости степенного ряда.

Теорема 5 (Формула Коши-Адамара). Для радиуса  сходимости степенного ряда  имеет место формула:

,                                                     (8)

где  означает верхний предел.

Доказательство. Нужно показать, что при любом , для которого ,  ряд сходится, а для всех , для которых  этот ряд расходится.

По определению верхнего предела для любого  существует  такое, что при :

.

Выберем  таким, чтобы было

(для этого нужно взять ). Тогда при  и  будем иметь:

.

Т.к. , то по теореме сравнения ряд, составленный из членов левой части, сходится.

Из определения верхнего предела далее имеем, что для любого  найдётся бесконечная последовательность , для которых , т.е.

.

Но при  всегда можно подобрать  так, чтобы было  (т.е. взять ). Тогда для нашей последовательности , соответствующей этому , члены  будут неограниченно возрастать и, следовательно, степенной ряд будет расходиться (его общий член не стремится к нулю). Ч.т.д.

Теорема 6. Сумма любого степенного ряда в круге его сходимости является аналитической функцией.

Доказательство. Пусть  - круг сходимости нашего степенного ряда. В любом круге , где , по теореме Абеля сходимость равномерна, а т.к. члены ряда  - аналитические функции, то по теореме Вейерштрасса его сумма аналитична в этом круге. Но т.к. любая внутренняя точка  круга сходимости может быть погружена в некоторый круг , где , то тем самым доказана аналитичность суммы ряда во всём круге его сходимости. Ч.т.д.

Теорема 7. Любой степенной ряд (в круге его сходимости) является рядом Тейлора своей суммы.

Доказательство. В самом деле пусть в некотором круге

.                                              (9)

Полагая здесь , получим . Последовательно дифференцируя ряд (9) почленно и полагая затем , найдём:

, , ,…,,…

Таким образом,

,                                                    (10)

т.е. ряд (9) действительно является рядом Тейлора функции . Ч.т.д.

Теорему 7 называют теоремой единственности разложения в ряд Тейлора, т.к. из неё следует, что найденное любым способом разложение аналитической функции  в степенной ряд является тейлоровским разложением этой функции.

Кроме того, из этой теоремы и теоремы Коши о разложении Тейлора следует, что радиус сходимости ряда (9) совпадает с расстоянием от центра  до ближайшей точки, в которой нарушается аналитичность суммы  этого ряда.

Теорема единственности.

 Нулём функции  называют любую точку , в которой  принимает значение 0, т.е. .

Если аналитическая функция не равна тождественно нулю в окрестности своего нуля , то в её тейлоровском разложении с центром в  все коэффициенты не могут равняться нулю. Номер младшего отличного от нуля коэффициента этого разложения называется порядком нуля . Таким образом, в окрестности нуля порядка  тейлоровское разложение функции  имеет вид

,                                   (1)

где  и .

 Порядок нуля  можно определить также как порядок младшей отличной от нуля производной .

Очевидно, что в окрестности нуля порядка  аналитическая функция  допускает представление вида

,                                                 (2)

где функция

;                               (3)

также аналитична в окрестности точки  (т.к. она представима сходящимся степенным рядом).

В силу непрерывности (z) эта функция отлична от 0 и в некоторой окрестности точки . Отсюда следует

Теорема 1. Пусть функция  аналитична в окрестности своего нуля  и не равна тождественно 0 ни в какой его окрестности. Тогда существует окрестность точки , в которой  не имеет других нулей, кроме .

Из доказанной теоремы вытекает теорема единственности теории аналитических функций.

Теорема 2 (единственности). Если функции  и  аналитичны в области  и их значения совпадают на некоторой последовательности точек ,сходящейся к внутренней точке a области, то всюду в

.

Доказательство. Для доказательства рассмотрим функцию

.

Она аналитична в  и имеет своими нулями точки , а в силу непрерывности и точку , ибо . Отсюда следует, что  тождественно равна 0 в некоторой окрестности точки , т.к. в противном случае нарушалась бы теорема 1. Таким образом, множество всех нулей функции  имеет хотя бы одну внутреннюю точку.

Обозначим через  совокупность всех внутренних точек множества нулей функции . Если  совпадает с , то теорема доказана. Если же  составляет лишь часть области , то найдётся граничная точка  множества , являющееся внутренней точкой . Существует последовательность точек , сходящаяся к ; точка  в силу непрерывности  является нулём .

С другой стороны,  не равна тождественно нулю ни в какой окрестности точки , ибо тогда точка  была бы внутренней, а не граничной точкой множества . По теореме 1 отсюда вытекает, что в некоторой окрестности точки  нет ни одного нуля , но это противоречит тому, что  является граничной точкой . Полученное противоречие и доказывает теорему.

Из теоремы единственности вытекает, что аналитическая в некоторой области и не равная тождественно нулю функция  не может обращаться в нуль ни в какой подобласти из , ни на какой дуге, лежащей в , ни даже на последовательности точек , сходящейся к её внутренней точке.

Однако легко привести пример, когда бесконечная последовательность нулей функции сходится к граничной точке её области аналитичности: функция  обращается в нуль на последовательности точек

, ,

сходящейся к точке .

  

 

  Верхним пределом последовательности действительных чисел  называется число  такое, что: 1) существует подпоследовательность  и 2) каково бы ни было , найдётся такой номер , что  для всех .


Если , то условие 2) отпадает, а при  число  в нём заменяется произвольным числом (в последнем случае условие 1) выполняется автоматически и существует ). Можно доказать, что всякая последовательность  имеет единственный (конечный или бесконечный) верхний предел.

6


 

А также другие работы, которые могут Вас заинтересовать

34703. Бухгалтерские издержки и прибыль 20.08 KB
  Бухгалтерские издержки и прибыль. Экономические издержки и прибыль. Издержки производства по–разному определяются бухгалтером и экономистом. Бухгалтер определяет издержки чтобы установить во что обошлось фирме производство продукции.
34704. Рынок и его функции. Виды рынков. Рыночная экономическая система 22.68 KB
  Рынок и его функции. Для домашней хозяйки рынок – это городской базар или магазин. Поэтому рынок – это форма контактов между продавцами и покупателями товаров и услуг недвижимости ценных бумаг и валюты. Таким образом рынок выполняет информационную функцию то есть через постоянно меняющиеся цены рынок сообщает производителям где и какой продукции не хватает где и какая продукция произведена с избытком.
34705. Смешанная экономическая система 16.52 KB
  СМЕШАННАЯ ЭКОНОМИКА это рыночная система основанная на частной собственности и свободном предпринимательстве регулируемая государством. В смешанной экономике активную роль играет государство. Государство вырабатывает правила игры создает законы которые должны обеспечить всем участникам хозяйственной деятельности равные права: государство ведет борьбу с недобросовестной конкуренцией контролирует деятельность фирм с целью недопущения незаконных финансовых операций и нарушения прав потребителей защищает от злоупотребления крупными...
34706. Монополистическая конкуренция. Определение объема продукции в условиях монополистической конкуренции 15.72 KB
  Монополистическая конкуренция – это тип рыночной структуры рынка состоящий из множества мелких фирм выпускающих дифференцированную продукцию и характеризующийся свободным входом на рынок и выходом с рынка. Сходства монополистической конкуренции с совершенной конкуренцией: большое число продавцов свободный вход на рынок и выход с рынка. Итак рынок с монополистической конкуренцией характеризуется следующими особенностями: наличие множества продавцов и покупателей отсутствие барьеров удерживающих новые фирмы от вступления на рынок...
34707. Олигополия. Ценовые войны. Картель 16.85 KB
  ; олигополистические фирмы взаимозависимы поэтому при формировании ценовой политики должны принимать во внимание реакцию конкурентов то есть контроль над ценами у олигополистических фирм ограничен. Только фирмы обладающие большими долями в общем объеме продаж могут влиять на цену товара. Фирмы соперники а трофеем является прибыль. Олигополистические фирмы по истечению некоторого времени вступают между собой в сотрудничество чтобы в будущем избежать понижения прибыли.
34708. Совершенная конкуренция. Равновесие конкурентной фирмы в коротком и долгом периодах. Условия максимизации прибыли при совершенной конкуренции 15.54 KB
  Равновесие конкурентной фирмы в коротком и долгом периодах. Фирмы которые функционируют в условиях совершенной конкуренции называют конкурентными. Такие фирмы принимают цену на свою продукцию как данную не могут влиять на цены и называются прайстэйкерами. Фирмы которые влияют на уровень цен называются прайс – мэйкерами.
34709. Совершенная конкуренция на рынках ресурсов. Спрос на ресурсы 18.01 KB
  Совершенная конкуренция на рынках ресурсов. Рынки ресурсов производства факторов производства – это рынки на которых в результате взаимодействия спроса и предложения формируются цены на труд капитал и природные ресурсы в форме заработной платы процента дохода и ренты. На рынках факторов производства ресурсов продавцами являются собственники факторов а покупателями – фирмы осуществляющие процесс превращения факторов производства в товары и услуги. Рынок ресурсов может быть двух видов: рынок ресурсов в условиях совершенной конкуренции...
34710. Отраслевой и рыночный спрос на ресурсы 19.4 KB
  Отраслевой спрос на ресурс – это сумма объемов спроса на производственные ресурсы со стороны отдельных фирм отрасли при каждой возможной цене на них. Спрос на труд как и на любой ресурс зависит от спроса на товар или услугу в производстве которых используется труд. Сокращение спроса на пишущие машинки уменьшает спрос на труд рабочих занятых в производстве и ремонте пишущих машинок. Таким образом величина спроса на труд зависит: от уровня цен на продукцию производимую с его помощью чем выше цена на продукт тем больше величина спроса...
34711. Отраслевое и рыночное предложение ресурсов 24.43 KB
  Объем предложения труда зависит от: цены на труд т. Кривая индивидуального предложения труда имеет вид загибающейся кривой то есть при определенном уровне ставки зарплаты она меняет свой положительный наклон на отрицательный. Тогда кривая предложения труда имеет положительный наклон. Тогда кривая индивидуального предложения труда имеет отрицательный наклон.