22352

Представление аналитических функций рядами

Лекция

Математика и математический анализ

Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.

Русский

2013-08-04

464 KB

13 чел.

Представление аналитических функций рядами.

Ряды Тейлора.

Воспользуемся формулой для суммы членов геометрической прогрессии

,

перепишем её в виде:

                                     (1)

(формула справедлива и для комплексных ).

Зафиксируем некоторую точку  из области  аналитичности функции  и, воспользовавшись формулой (1), напишем

Умножим обе части этого равенства на  и проинтегрируем его по  вдоль некоторого замкнутого контура C, лежащего в  и охватывающего точки  и . Пользуясь формулой Коши и формулами для высших производных (), получим так называемую формулу Тейлора

,                     (2)

где остаточный член имеет вид

.                                     (3)

Ответ на вопрос о том, при каких условиях  при , т.е. при каких условиях функция  представима своим рядом Тейлора с центром в точке :

,                                             (4)

даёт

Теорема 1 (Коши). Функция  представима своим рядом Тейлора (4) в любом открытом круге с центром в точке , в котором она аналитична. Во всякой замкнутой области, принадлежащей этому кругу, ряд Тейлора сходится равномерно.

Доказательство. Обозначим через  радиус круга аналитичности функции  (с центром в точке ) и рассмотрим произвольное число ,  и круг , где  - произвольное положительное число. Пусть  - любая точка последнего круга и  - окружность . Имеем: , , следовательно,

,

поэтому формула (3) даёт:

;

где  - максимум модуля  в круге  (функция  аналитична в этом круге и, следовательно, ограничена). Т.к. , то отсюда видно, что  при , причём оценка  не зависит от ; таким образом, в любом круге , где , ряд Тейлора сходится равномерно.

Произвольную замкнутую область, лежащую в круге аналитичности функции , можно погрузить в некоторый круг , где , , следовательно, и в такой области ряд сходится равномерно. Ч.т.д.

Таким образом, всякая аналитическая в круге функция представляется в нём сходящимся степенным рядом.

Степенные ряды.

 

            Теорема 2 (Вейерштрасса). Если ряд

,                                                         (5)

составленный из функций, аналитических в односвязной области , равномерно сходится в этой области, то его сумма также является функцией, аналитической в .

Доказательство. В самом деле, согласно предыдущей лекции, сумма  ряда (5) непрерывна в . Пусть  - произвольный замкнутый контур, лежащий в ; в силу равномерной сходимости ряда (5) его можно почленно проинтегрировать вдоль  и мы получим, что

,

т.к. по теореме Коши интеграл от аналитической функции  по замкнутому контуру в односвязной области равен нулю. Теперь по теореме Мореры можно утверждать, что функция  аналитична в области . Ч.т.д.

Теорема 3 (Вейерштрасса).  Произвольный ряд (5), составленный из функций, аналитических в области  и непрерывных в , равномерно сходящийся в , можно почленно дифференцировать в  любое число раз.

Доказательство. Пусть  - произвольная точка границы  области , а  - произвольная внутренняя точка этой области. Т.к. разность  при фиксированном  ограничена снизу по модулю положительным числом, то ряд , где  - произвольное натуральное число, сходится равномерно относительно  на . Следовательно, его можно почленно интегрировать вдоль , и значит, сходится ряд

                                       (6)

(для каждого члена ряда мы воспользуемся формулой Коши для производных). Остаётся доказать, что сумма ряда (6) является -ой производной суммы  ряда (5). Но в силу равномерной сходимости левую часть формулы (6) можно записать в виде

.

Ч.т.д.

Замечание 1. Если ряд (5) из аналитических функций равномерно сходится на границе  области , то он равномерно сходится в . (Это непосредственно следует из принципа максимума модуля, согласно которому

).

Замечание 2. В теореме 3 можно утверждать сходимость ряда из производных лишь в , но не в . Например, ряд  равномерно сходится в замкнутом круге , т.к. он мажорируется там сходящимся числовым рядом . Однако, ряд производных  (сходящийся по теореме 3 при ) расходится в точке  границы круга.

Теорема 4 (Абеля). Если степенной ряд  сходится в точке , то он сходится и в любой точке , расположенной ближе к центру , чем , причём в любом круге , где  сходимость ряда равномерна.

Доказательство. Пусть  - произвольная точка этого круга. Представим -й член ряда в виде

.

В силу сходимости ряда в точке  его общий член стремится к нулю и, следовательно, ограничен в этой точке, т.е.  для всех . Кроме того, по условию . Таким образом, для всех

, .                                        (7)

Отсюда вытекает равномерная сходимость ряда в круге . Т.к. число  может быть взято сколь угодно близким к 1, то тем самым доказана сходимость ряда в любой точке круга  и доказательство теоремы Абеля закончено.

Из теоремы Абеля вытекает, что областью сходимости степенного ряда  является открытый круг с центром в точке  (который может вырождаться в точку или заполнять всю плоскость) и ещё, быть может, некоторые точки на границе круга. Радиус этого круга называется радиусом сходимости степенного ряда.

Теорема 5 (Формула Коши-Адамара). Для радиуса  сходимости степенного ряда  имеет место формула:

,                                                     (8)

где  означает верхний предел.

Доказательство. Нужно показать, что при любом , для которого ,  ряд сходится, а для всех , для которых  этот ряд расходится.

По определению верхнего предела для любого  существует  такое, что при :

.

Выберем  таким, чтобы было

(для этого нужно взять ). Тогда при  и  будем иметь:

.

Т.к. , то по теореме сравнения ряд, составленный из членов левой части, сходится.

Из определения верхнего предела далее имеем, что для любого  найдётся бесконечная последовательность , для которых , т.е.

.

Но при  всегда можно подобрать  так, чтобы было  (т.е. взять ). Тогда для нашей последовательности , соответствующей этому , члены  будут неограниченно возрастать и, следовательно, степенной ряд будет расходиться (его общий член не стремится к нулю). Ч.т.д.

Теорема 6. Сумма любого степенного ряда в круге его сходимости является аналитической функцией.

Доказательство. Пусть  - круг сходимости нашего степенного ряда. В любом круге , где , по теореме Абеля сходимость равномерна, а т.к. члены ряда  - аналитические функции, то по теореме Вейерштрасса его сумма аналитична в этом круге. Но т.к. любая внутренняя точка  круга сходимости может быть погружена в некоторый круг , где , то тем самым доказана аналитичность суммы ряда во всём круге его сходимости. Ч.т.д.

Теорема 7. Любой степенной ряд (в круге его сходимости) является рядом Тейлора своей суммы.

Доказательство. В самом деле пусть в некотором круге

.                                              (9)

Полагая здесь , получим . Последовательно дифференцируя ряд (9) почленно и полагая затем , найдём:

, , ,…,,…

Таким образом,

,                                                    (10)

т.е. ряд (9) действительно является рядом Тейлора функции . Ч.т.д.

Теорему 7 называют теоремой единственности разложения в ряд Тейлора, т.к. из неё следует, что найденное любым способом разложение аналитической функции  в степенной ряд является тейлоровским разложением этой функции.

Кроме того, из этой теоремы и теоремы Коши о разложении Тейлора следует, что радиус сходимости ряда (9) совпадает с расстоянием от центра  до ближайшей точки, в которой нарушается аналитичность суммы  этого ряда.

Теорема единственности.

 Нулём функции  называют любую точку , в которой  принимает значение 0, т.е. .

Если аналитическая функция не равна тождественно нулю в окрестности своего нуля , то в её тейлоровском разложении с центром в  все коэффициенты не могут равняться нулю. Номер младшего отличного от нуля коэффициента этого разложения называется порядком нуля . Таким образом, в окрестности нуля порядка  тейлоровское разложение функции  имеет вид

,                                   (1)

где  и .

 Порядок нуля  можно определить также как порядок младшей отличной от нуля производной .

Очевидно, что в окрестности нуля порядка  аналитическая функция  допускает представление вида

,                                                 (2)

где функция

;                               (3)

также аналитична в окрестности точки  (т.к. она представима сходящимся степенным рядом).

В силу непрерывности (z) эта функция отлична от 0 и в некоторой окрестности точки . Отсюда следует

Теорема 1. Пусть функция  аналитична в окрестности своего нуля  и не равна тождественно 0 ни в какой его окрестности. Тогда существует окрестность точки , в которой  не имеет других нулей, кроме .

Из доказанной теоремы вытекает теорема единственности теории аналитических функций.

Теорема 2 (единственности). Если функции  и  аналитичны в области  и их значения совпадают на некоторой последовательности точек ,сходящейся к внутренней точке a области, то всюду в

.

Доказательство. Для доказательства рассмотрим функцию

.

Она аналитична в  и имеет своими нулями точки , а в силу непрерывности и точку , ибо . Отсюда следует, что  тождественно равна 0 в некоторой окрестности точки , т.к. в противном случае нарушалась бы теорема 1. Таким образом, множество всех нулей функции  имеет хотя бы одну внутреннюю точку.

Обозначим через  совокупность всех внутренних точек множества нулей функции . Если  совпадает с , то теорема доказана. Если же  составляет лишь часть области , то найдётся граничная точка  множества , являющееся внутренней точкой . Существует последовательность точек , сходящаяся к ; точка  в силу непрерывности  является нулём .

С другой стороны,  не равна тождественно нулю ни в какой окрестности точки , ибо тогда точка  была бы внутренней, а не граничной точкой множества . По теореме 1 отсюда вытекает, что в некоторой окрестности точки  нет ни одного нуля , но это противоречит тому, что  является граничной точкой . Полученное противоречие и доказывает теорему.

Из теоремы единственности вытекает, что аналитическая в некоторой области и не равная тождественно нулю функция  не может обращаться в нуль ни в какой подобласти из , ни на какой дуге, лежащей в , ни даже на последовательности точек , сходящейся к её внутренней точке.

Однако легко привести пример, когда бесконечная последовательность нулей функции сходится к граничной точке её области аналитичности: функция  обращается в нуль на последовательности точек

, ,

сходящейся к точке .

  

 

  Верхним пределом последовательности действительных чисел  называется число  такое, что: 1) существует подпоследовательность  и 2) каково бы ни было , найдётся такой номер , что  для всех .


Если , то условие 2) отпадает, а при  число  в нём заменяется произвольным числом (в последнем случае условие 1) выполняется автоматически и существует ). Можно доказать, что всякая последовательность  имеет единственный (конечный или бесконечный) верхний предел.

6


 

А также другие работы, которые могут Вас заинтересовать

41678. Исследование источника дискретной информации 165.5 KB
  А при изпользлвании кода Хаффмена избыточность уменьшилась до 0,51%, из этого следует что избыточность при кодировании этим методом уменьшилась в 16 раз. А при использовании кода Шеннона – Фано избыточность уменьшилась всего в 5,5 раз. Исходя из полученных значений, в нашем случае эффективнее использовать методику кодирования Хаффмена.
41679. Возможности текстового редактора WORD для работы с документами 193.87 KB
  Создание электронной подписи документа и проверка ее подлинности В разделе справка текстового редактора – в окне поиск – наберите ключевые слова цифровая подпись документа и найдите статью Цифровые подписи и сертификаты в которой вы сможете узнать – что такое цифровая подпись что собой представляет сертификат подписи и центр сертификации что обеспечивает цифровая подпись. Для дополнительного чтения Получение цифрового сертификата от центра сертификации или партнера Майкрософт Если предполагается обмениваться документами...
41680. Режимы течения 43.45 KB
  Изменение уровня воды в баке м h 003 002 003 003 2. Температура воды С Т 23 23 23 23 4. Кинематический коэффициент вязкости воды см с v = 17. Объем воды поступившей в бак за время t см3 W = Bh 0000252 0000168 0000252 0000168 6.
41681. Цифровой осциллограф, генераторы сигналов, блок питания и вольтметр универсальный 5.65 MB
  Осциллограф конструктивно выполнен в виде платы расширения ПЭВМ и вставляется в любой из свободных слотов PCIшины материнской платы. Внешний вид осциллографа представлен на рисунке 1.1 – Внешний вид осциллографа BORDO На внешней панели осциллографа имеются три стандартных разъема типа СР50. ПЗВМ управляет всеми режимами работы осциллографа осуществляет считывание информации из буферного ОЗУ ее обработку и передачу в видеопамять ПЭВМ для наблюдения на экране монитора.
41682. Основные приемы работы в Microsoft Excel 2007. Создание таблиц 8.21 MB
  Выделить ячейки с А1 по F1 и выполнить объединение ячеек Главная – Выравнивание – Объединение ячеек. Произвести форматирование набранных заголовков для этого необходимо выделить их и выполнить команду Главная – Выравнивание – Выравнивание в соответствии и рисунком. Задать внутренние и внешние границы созданной таблицы Главная – Выравнивание – Граница. Оформить внешние границы двойной линией Главная – Выравнивание – Граница.
41683. ИССЛЕДОВАНИЕ РЕЖИМА НАПРЯЖЕНИЯ СЕЛЬСКОЙ РАДИАЛЬНОЙ СЕТИ И ВЫБОР НАДБАВОК У ТРАНСФОРМАТОРОВ 82.16 KB
  Регулирование напряжения в сельских электрических сетях улучшает режим напряжений у потребителей, повышая качество поставляемой электрической энергии. С другой стороны, регулирование напряжения увеличивает допустимую потерю напряжения до предела, определяемого экономической целесообразностью, и благодаря этому уменьшает расход металла проводов.
41684. Работа с файлами и каталогами в операционной системе MS-Dos 890.07 KB
  Просмотр каталогов.Создание каталогов Задача Просмотр дерева каталогов научиться работать с файлами и каталогами в ОС MS-DOS
41686. ОЗНАКОМЛЕНИЕ СО СРЕДСТВАМИ МОДЕЛИРОВАНИЯ И ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ СХЕМ В ПРОГРАММЕ EWB 41.97 KB
  Высокой точностью отличается табличный метод но он наиболее трудоемкий и требует наличие полной принципиальной схемы электронного устройства знание интенсивностей отказов и коэффициента электрической нагрузки каждого элемента схемы. Поэтому последовательность лабораторных работ согласована с этапами расчета надежности а именно: изучение принципиальной схемы усилителя; назначение элементов схемы и их влияние на надежность; настройка схемы и измерение токов и напряжений на каждом элементе схемы; расчет коэффициентов нагрузки и...