22354

Примеры особых точек

Лекция

Математика и математический анализ

Функции имеют в начале координат устранимую особую точку. Функции имеют начале координат существенную особую точку. Проверим справедливость теоремы Сохоцкого для функции . Целые функции.

Русский

2013-08-04

2.06 MB

7 чел.

Примеры особых точек.

1. Функции  имеют в начале координат устранимую особую точку. Это следует из тейлоровского разложения этих функций и теоремы 1 предыдущей лекции. В частности, при z0

 

2. Функция  имеет полюсы в точках , , в которых знаменатель обращается в нуль (эти точки располагаются на двух биссектрисах координатных углов). Все полюсы первого порядка, т.к. функция  имеет в них нули первого порядка (ее производная  отлична от нуля в этих точках).

3. Функции  имеют начале координат существенную особую точку. В этом легко убедиться, подставляя  вместо z в тейлоровском разложении этих функций и пользуясь теоремой №3 предыдущей лекции (в частности, при z0  ).

    Проверим справедливость теоремы Сохоцкого для функции . Для A= в качестве  берем , k = 1, 2, …, ибо очевидно ; для A = 0 можно принять , , т.к. . Для конечного  берем , k = 0,1,2, …, тогда  ( означает какое-нибудь значение логарифма).

Функция  имеет в начале координат неизолированную особую точку, т.к. ее полюсы  накапливаются к началу координат (см. пример 2).

По характеру особых точек выделяют следующие два класса однозначных аналитических функций.

1. Целые функции. Функция f(z) называется целой (или голоморфной), если она не имеет особых точек ни в какой конечной части плоскости. По теореме Коши всякая целая функция представима степенным рядом, сходящимся в любой конечной части плоскости. И, обратно, всякая функция, представимая степенным рядом , сходящимся в любой конечной части плоскости, является целой функцией. Примерами целых функций являются многочлены, показательная функция,  и др. Очевидно, сумма, разность и произведение целых функций суть снова целые функции.

2. Дробные функции. Функция f(z) называется дробной (или мероморфной), если она не имеет других особенностей, кроме полюсов. Из этого определения вытекает, что в любой ограниченной области мероморфная функция может иметь лишь конечное число полюсов. В самом деле, если бы в такой области было бы бесконечно много полюсов, то существовала бы их последовательность, сходящаяся к некоторой точке a, которая была бы неизолированной особой точкой, а не полюсом. Во всей плоскости полюсов может быть и бесконечно много. Примерами мероморфных функций являются все целые функции, дробно-рациональные функции, тригонометрические функции и др. Очевидно, сумма, разность, произведение и частное двух мероморфных функций и вообще любая дробно-рациональная функция  от мероморфных функций снова является мероморфной функцией.

Вычеты. Теорема о вычетах.

Вычетом функции f(z)  в изолированной особой точке a называется число

                                    ,                                    (1)

где  - достаточно малая (такая, чтобы внутри нее не было особых точек, кроме а) окружность, проходимая в положительном направлении.

Из формул для коэффициентов ряда Лорана при  непосредственно вытекает, что

                                                      ,                                                    (2)

т.е. что вычет функции f(z) в особой точке a равен коэффициенту при минус первой степени в лорановском разложении f(z) в окрестности a.

Отсюда следует, что в устранимой особой точке вычет функции равен нулю. В полюсе порядка n:

                                     .                        (3)

Для вывода этой формулы достаточно умножить лорановское разложение  на , продифференцировать полученное равенство (n-1) раз и затем перейти к пределу при .  

Для полюсов I порядка формула (3) принимает вид

                                                  .                                    (4)

Если при этом в окрестности точки a , причем , а  имеет в точке a нуль I порядка (т.е. ), то

                           .              (5)

 Теорема (Коши о вычетах). Пусть функция f(z) непрерывна на границе* C области D и аналитична внутри этой области всюду, кроме конечного числа особых точек . Тогда, если C обходится в положительном направлении, то

                                          .                                           (6)

 Доказательство. Доказательство вытекает из теоремы Коши для многосвязных областей. Заключим каждую точку  в кружок  столь малый, что все такие кружки лежат в области D и не пересекаются друг с другом (см. рис.).

                                                   

                                                       

                                                                                     

                                                 

                                                                               С             

Т.к. f(z) аналитична в области , ограниченной кривой C и совокупностью окружностей  и непрерывна в , то по теореме Коши

,

где все  проходятся по часовой стрелке. Меняя направление обхода окружности  и пользуясь определением вычета, согласно которому

,

получаем доказываемый результат (6).

Принцип аргумента и теорема Руше.

Под логарифмическим вычетом аналитической функции f(z) в точке a понимают вычет ее логарифмической производной

.

Если точка а является нулем f(z) порядка n, то в окрестности этой точки

следовательно,

и логарифмическая производная

где  аналитична в точке а, т.к. , поэтому

                                                              (7)

Пусть теперь a является полюсом f(z) порядка n. Тогда функция  имеет в точке a нуль порядка n и по только что доказанному, для логарифмической производной  точка a является полюсом I порядка с вычетом, равным (-n). Таким образом доказана

 Теорема 1. В нулях и полюсах функции f(z) ее логарифмическая производная  имеет полюсы I порядка, причем в нуле функции логарифмический вычет равен порядку нуля, а в полюсе – порядку полюса со знаком минус.

Пусть функция f(z) аналитична внутри ограниченной области D всюду, кроме конечного числа полюсов  кратностей соответственно , непрерывна на границе C этой области и не обращается на C в нуль; пусть еще  непрерывна на C. Тогда функция f(z) имеет в D лишь конечное число нулей, ибо в противном случае существовала бы бесконечная последовательность нулей, сходящаяся к внутренней или граничной точке области D, но эта последовательность не может сходиться ни к внутренней точке (по теореме единственности), ни к граничной точке (т.к.  и непрерывна на C). Нули f(z) в области D мы обозначим через , а их кратности соответственно через . Применяя к логарифмической производной f(z) теорему о вычетах и теорему 1, мы получим:

                         (8)

где N и P обозначают соответственно полное число нулей и полюсов этой функции, причем каждый нуль и полюс считается столько раз, каков его порядок.

Выясним геометрический смысл левой части последнего равенства. Имеем:

                                                      (9)

где  и  обозначают какие-нибудь ветви (см. ниже) этих функций, непрерывные вдоль C. Пусть C ограничивает односвязную область. Т. к. при обходе замкнутого контура C функция  возвращается к своему первоначальному значению, то первый интеграл в правой части (9) равен нулю. С другой стороны, если точка w=0 лежит внутри контура, описываемого точкой w = f(z), когда z обходит C, то конечное значение  может отличаться от начального (см. рис.) и тогда второе слагаемое будет отличным от нуля. Величина

- полное изменение аргумента функции f(z) при обходе C, деленное на , - геометрически представляет собой число оборотов вокруг начала w = 0 вектора f(z) при полном обходе C, или, что тоже самое, вектора w при обходе кривой Г, соответствующей C при отражении w = f(z). Соотношения (8) и (9) выражают так называемый принцип аргумента.

Теорема 2. Пусть функция f(z) аналитична внутри односвязной области D всюду, кроме конечного числа полюсов, непрерывна на границе C этой области и не обращается на C в нуль; пусть еще  непрерывна на C. Тогда разность между полным числом нулей и полюсов этой функции внутри D равна числу оборотов вектора w при обходе кривой , соответсвующей C при отображении w=f(z), или, что тоже самое, - сумме логарифмических вычетов f(z) в области D:

                                  .                               (10)

Полезным следствием принципа аргумента является следующая

Теорема 3 (Руше). Если функции f(z) и g(z) аналитичны внутри C, а на C непрерывны, имеют непрерывные производные, и удовлетворяют условию

                                                             ,                                             (11)

то функции f(z) и f(z)+g(z) имеют внутри C одинаковое число нулей.

Доказательство. Для доказательства заметим, что в силу нашего условия на C | f(z)|>0 и . Следовательно, функции f(z) и f(z)+g(z) не обращаются на C в нуль и к ним применим принцип аргумента. Из соотношения

получаем:

Но т.к. при движении точки z по контуру C точка  все время остается внутри круга  (это следует из того, что  на C)**,то точка  не может обойти начала координат и, значит . Таким образом,

и остается воспользоваться формулой (10) при P = 0.

Теорема 4 (Основная теорема алгебры). Уравнение

                                                       (12)

имеет в комплексной плоскости n (конечных) корней.

Доказательство. Для доказательства примем  и выберем R столь большим, чтобы на окружности |z| = R было | f(z)| > |g(z)| - это можно сделать, т.к. , а , и  растет быстрее, чем любой многочлен степени (n-1). Тогда по теореме Руше число корней уравнения в круге  равно числу нулей , т.е. n. С другой стороны, т.к. , то, еще увеличивая в случае надобности R, мы можем считать, что вне круга уравнение не имеет корней.

* Непрерывность f(z) на границе области понимается в смысле непрерывности по области, т.е. в том смысле, что в любой точке  границы существует , причем  по точкам области  D. Если С имеет кратные точки, например, содержит двубережный разрез, то условие можно ослабить, потребовав существования предельных значений f(z) лишь при   с каждой из сторон разреза (при этом пределы с одной и с другой стороны не обязаны совпадать).

*                                                           *

3


 

А также другие работы, которые могут Вас заинтересовать

22127. Эволюция органов и функций 82 KB
  Количество часов: 2 Эволюция органов и функций Принципы филогенетического преобразования органов и функций. Взаимосвязь морфофизиологических преобразований органов и систем в филогенезе. Принцип компенсации функций Принципы филогенетического преобразования органов и функций. Филогенетические изменения органов весьма разнообразны.
22128. Происхождение и развитие жизни на Земле 191 KB
  Количество часов: 6 Происхождение и развитие жизни на Земле Жизнь как особая форма движения материи. Гипотезы происхождения жизни Краткие сведения о геохронологии Возникновение жизни. Но не преувеличивают ли загадочности жизни. Второе – перенос жизни через мировые пространства довольно трудно допустить.
22129. ВВЕДЕНИЕ В ТЕОРИЮ ЭВОЛЮЦИИ 92 KB
  Количество часов: 2 В биологии все наполняется смыслом лишь тогда когда истолковывается с эволюционной точки зрения. Значение эволюционной теории Основные доказательства эволюции. Значение эволюционной теории Происхождение жизни на Земле – одна из центральных проблем современного естествознания и исходная точка любой религии. Целью эволюционной теории является выявление закономерностей развития органического мира объектом служат организмы в процессе их исторического развития к методам изучения относятся палеонтологический...
22130. Экологические основы эволюции 104.5 KB
  Понятие биогеоценоза – очень важно в теории эволюции поскольку в них существуют и эволюционируют популяции. Некоторые виды состоят из огромного числа популяций другие из немногих или даже из одной популяции. Характеристики популяции оказывают влияние на действие эволюционных факторов. По пространственному распределению выделяют три основных типа популяций: 1 большие непрерывные популяции популяции злаков растущих на равнинах и покрывающих площади шириной в десятки или сотни километров; 2 мелкие изолированные колониальные популяции...
22131. Осадка. Распределение накопленной деформации (εi) по объему осаженной заготовки 182 KB
  Расчет силы деформирования при осадке и построение графика технологических нагрузок. Мощность и работа пластической деформации при продольной осадке цилиндра. Работа деформирования при продольной осадке.Схема осадки:1 – нижняя плита; 2 – верхняя подвижная плита; 3 – цилиндрическая заготовка при продольной осадке; 4 – цилиндрическая заготовка при поперечной осадке.
22132. Метод баланса работ 36 KB
  В основу метода положено следующее положение: при пластической деформации работа внешних сил на соответствующих им перемещениях равна работе внутренних сил работе пластической деформации. Работа пластической деформации 2 Если упрочнение отсутствует то Чаще принимают равным выбранному по АВ – работа внешних сил: активной силы силы деформирования; сил трения. Работа сил трения берется со знаком минус. 3 где X Y Z – проекции силы действующей по участку поверхности dF на оси координат а UX UY UZ –...
22133. Феноменологическая теория разрушения металлов при холодной пластической деформации 98 KB
  Феноменологическая теория базируется на сложившихся в настоящее время физических представлениях о закономерностях разрушения металла при пластической деформации. Различными экспериментальными методами было показано что величина пластического разрыхления возрастает пропорционально степени деформации сдвига. Авторами данной теории была выдвинута следующая гипотеза: 1 где степень разрыхления частицы накопленная частицей деформация сдвига ab коэффициенты...
22134. Выдавливание. Расчет силы деформирования и построение графика технологических нагрузок 617.5 KB
  Основы теории штамповки выдавливанием на прессах М. Прямое выдавливание – технологическая операция в процессе которой происходит истечение металла 2 заключенного в замкнутой полости контейнер 3 в направлении движения рабочего инструмента 1 через отверстие поперечное сечение которого определяет поперечное сечение выдавливаемой части деформируемой заготовки. Обратное выдавливание – технологическая операция в процессе которой происходит истечение металла из замкнутой полости в направлении обратном встречном движению рабочего...
22135. Вытяжка без утонения 314 KB
  Схема операции – вытяжка из осесимметричной полой заготовки. При этом величина зазора между матрицей и пуансоном составляет не менее толщины исходной листовой заготовки Рис. Пример заготовки и детали.